Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > MIT researchers to play key roles in new Center for Integrated Quantum Materials: Professor Raymond C. Ashoori will serve as co-principal investigator in the Harvard-led effort to develop new devices for quantum computing

Raymond C. Ashoori
Photo: Denis Paiste/Materials Processing Center
Raymond C. Ashoori

Photo: Denis Paiste/Materials Processing Center

Abstract:
MIT physics professor Raymond C. Ashoori and a team of MIT researchers will play key roles of the Center for Integrated Quantum Materials, led by Harvard University and funded with a $20 million National Science Foundation (NSF) Science and Technology Center program award.

MIT researchers to play key roles in new Center for Integrated Quantum Materials: Professor Raymond C. Ashoori will serve as co-principal investigator in the Harvard-led effort to develop new devices for quantum computing

Cambridge, MA | Posted on October 2nd, 2013

"The idea is to make structures where quantum mechanics shows up in either electronic or optical signatures," says Ashoori, who will serve as co-principal investigator in the effort to develop a new class of quantum electronic devices and systems that will transform signal processing and computation.

The team will work with graphene, a one-atom thick form of carbon; topological insulators, a class of materials on which electrons move, on the surface, in the directions of their individual electronic spins; and nitrogen vacancy centers in diamond, which can store quantum information and be readily probed optically.

MIT will receive about $1 million a year, for five years. The MIT award will be managed by the Materials Processing Center.

"Ultimately, we would like to integrate our knowledge from these three basic areas into projects that develop on all three ideas," Ashoori says. "There are possibilities for radically different kinds of electronics with these materials. Topological insulators are a newer field where it may be possible to implement strategies for quantum computing and to do some really way out things."

Graphene could potentially replace silicon as the material for future computer processors.

The project's principal investigator is Robert M. Westervelt, the Mallinckrodt Professor of Applied Physics and of Physics at Harvard. Besides Ashoori, other co-principal investigators are Gary L. Harris, a professor of electrical and computer engineering at Howard University; and Carol Lynn Alpert, director of strategic projects at the Museum of Science in Boston.

Other MIT researchers involved in the project include Department of Physics faculty Pablo Jarillo-Herrero, Nuh Gedik, Liang Fu, Leonid S. Levitov and Jagadeesh Moodera (senior scientist); Department of Electrical Engineering and Computer Science faculty Tomas Palacios and Jing Kong; and mechanical engineering professor Seth Lloyd.

"What I like about our group from MIT is it's very tight, in that people have considerable overlap in interests," Ashoori says. "Even within MIT, it's a mechanism for bringing us together and new collaborations frequently just happen this way when you are brought together at regular events that are part of a center like this. It just makes things happen, and it also gives people an incentive to make sure that things happen."

The researchers' proposal to NSF was one of three selected from a national competition that started with more than 250 pre-proposals. The project starts Oct. 1.
The project, based at Harvard School of Engineering and Applied Sciences (SEAS) also includes a network of four-year colleges, including Wellesley College, Gallaudet University, Olin College and Mount Holyoke College; and six community colleges, including Bunker Hill Community College. The educational component will focus on preparing these students for graduate school.

Rotating seminars will bring students and faculty from the different schools together. "The idea is to reach out to a pretty broad community that stretches us a bit beyond what we normally do in our day-to-day lives," Ashoori says.

There will also be corporate partnerships with BASF Corp. on graphene research, and with Element Six Ltd. and Epitaxial Technologies on diamond growth research.

####

For more information, please click here

Contacts:
MIT news
77 Massachusetts Avenue, Room 11-400
Cambridge, MA 02139-4307
617.253.2700
TTY 617.258.9344

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

2018 Kavli Prizes in Astrophysics, Nanoscience, and Neuroscience to be Announced Live on May 31: Live announcement at the Norwegian Academy of Science and Letters to be streamed live at World Science Festival Event May 24th, 2018

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Graphene/ Graphite

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

Strain improves performance of atomically thin semiconductor material May 11th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Academic/Education

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Lifeboat Foundation funds flying 3D-printed classroom cubesats with Perlan II April 16th, 2018

SUNY Poly’s Center for Semiconductor Research in Albany Earns World-Class TÜV SÜD AMERICA INC. ISO 9001:2015 Certification: Albany NanoTech Complex Certification Assures Top-Tier Quality in Semiconductor Test Structures; Certification a First for a SUNY Campus March 6th, 2018

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Quantum Computing

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Announcements

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

2018 Kavli Prizes in Astrophysics, Nanoscience, and Neuroscience to be Announced Live on May 31: Live announcement at the Norwegian Academy of Science and Letters to be streamed live at World Science Festival Event May 24th, 2018

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

Research partnerships

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Nanoscale measurements 100x more precise, thanks to improved two-photon technique May 8th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Quantum nanoscience

Nanoscale measurements 100x more precise, thanks to improved two-photon technique May 8th, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project