Home > Press > Improving lithium-ion batteries with nanoscale research
![]() |
| TEM image of a Silicon / Germanium nanowire. |
Abstract:
New research led by an electrical engineer at the University of California, San Diego is aimed at improving lithium-ion batteries through possible new electrode architectures with precise nano-scale designs. The researchers created nanowires that block diffusion of lithium (Li) across their silicon surface and promote layer-by-layer axial lithiation of the nanowire's germanium core.
Watch a video on YouTube that shows the axial lithiation of a silicon-coated nanowire's germanium core, as well as radial diffusion of lithium into an uncoated germanium nanowire. Video is from Dayeh's Integrated Electronics and Bio-interfaces Lab at UC San Diego and collaborators at Sandia National Laboratories.
Shadi Dayeh, a professor in the Department of Electrical and Computer Engineering at the UC San Diego Jacobs School of Engineering, explained that this work could lead to "an effective way to tailor volume expansion of lithium ion battery electrodes which could potentially minimize their cracking, improve their durability, and perhaps influence how one could think about different electrode architectures."
The research was recently published in the journal Nano Letters in the paper "Tailoring Lithiation Behavior by Interface and Bandgap Engineering at the Nanoscale."
By coating germanium nanowires with silicon, the researchers stopped nearly all surface diffusion of lithium ions into the nanowires. Instead, lithium diffusion, known as lithiation, occurred layer by layer along the axis of the nanowire. This is in contrast to lithiation from the surface of nanowires not covered with silicon.
"These results demonstrate for the first time that interface and bandgap engineering of electrochemical reactions can be utilized to control the nanoscale ionic transport / insertion paths and thus may be a new tool to define the electrochemical reactions in Li-ion batteries," the researchers write in their Nano Letters paper.
Dayeh grew the nanowires during his time as a postdoctoral researcher at Los Alamos National Laboratory (LANL). Lithiation experiments were performed by two postdoctoral researchers from Sandia National Laboratories, Drs. Yang Liu and Xiaohua Liu, and Dayeh's postdocdoral researchers working at LANL. Dayeh formulated the mechanism and performed the analysis and simulations after joining the faculty of the Electrical and Computer Engineering Department at the UC San Diego Jacobs School of Engineering.
Funding sources for this research includes Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Los Alamos National Laboratory, Sandia National Laboratories, and UC San Diego.
####
For more information, please click here
Contacts:
Daniel Kane
858-534-3262
Copyright © University of California - San Diego
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
Listen to an audio conversation with Shadi Dayeh on SoundCloud:
and a cover letter in the journal Nano Letters:
Shadi Dayeh and the Integrated Electronics and Bio-interfaces Lab:
More Electrical and Computer Engineering News Via RSS:
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Laboratories
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
Videos/Movies
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||