Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Liquid biopsy could improve cancer diagnosis and treatment

Abstract:
A microfluidic chip developed at the University of Michigan is among the best at capturing elusive circulating tumor cells from blood—and it can support the cells' growth for further analysis.

Liquid biopsy could improve cancer diagnosis and treatment

Ann Arbor, MI | Posted on September 30th, 2013

The device, believed to be the first to pair these functions, uses the advanced electronics material graphene oxide. In clinics, such a device could one day help doctors diagnose cancers, give more accurate prognoses and test treatment options on cultured cells without subjecting patients to traditional biopsies.

"If we can get these technologies to work, it will advance new cancer drugs and revolutionize the treatment of cancer patients," said Dr. Max Wicha, director of the U-M Cancer Center and co-author of a paper on the new device, published online this week in Nature Nanotechnology.

"Circulating tumor cells will play a significant role in the early diagnosis of cancer and to help us understand if treatments are working in our cancer patients by serving as a 'liquid' biopsy to assess treatment responses in real time," said co-author Dr. Diane Simeone, the Lazar J. Greenfield Professor of Surgery at the U-M Medical School and director of the Translational Oncology Program.

"Studies of circulating tumor cells will also help us understand the basic biologic mechanisms by which cancer cells metastasize or spread to distant organs—the major cause of death in cancer patients."

Yet these cells aren't living up to their promise in medicine because they are so difficult to separate from a blood sample, the researchers say. In the blood of early-stage cancer patients, they account for less than one in every billion cells, so catching them is tougher than finding the proverbial needle in a haystack.

"I can burn the haystack or use a huge magnet," said Sunitha Nagrath, an assistant professor of chemical engineering, who led the research. "When it comes to circulating tumor cells, they almost look like—feel like—any other blood cell."

On their microfluidic chip, Nagrath's team grew dense forests of molecular chains, each equipped with an antibody to grab onto cancer cells.

Even after the cells are caught, it's still hard to run a robust analysis on just a handful of them, the researchers say. That's why this demonstration of highly sensitive tumor cell capture, combined with the ability to grow the cells in the same device, is so promising.

Hyeun Joong Yoon, a postdoctoral researcher in the Nagrath lab with a background in electrical engineering, was instrumental in making the microfluidic chip. He started with a silicon base and added a grid of nearly 60,000 flat gold shapes, like four-petaled flowers, each no wider than a strand of hair.

The gold flowers naturally attracted a relatively new material called graphene oxide. These sheets of carbon and oxygen, just a few atoms thick, layered themselves over the gold. This layered formation allowed the team to grow the tumor-cell-catching molecular chains so densely.

"It's almost like each graphene has many nano-arms to capture cells," Nagrath said.

To test the device, the team ran one-milliliter samples of blood through the chip's thin chamber. Even when they had added just three-to-five cancer cells to the 5-10 billion blood cells, the chip was able to capture all of the cells in the sample half the time, with an average of 73 percent over 10 trials.

"That's the highest anybody has shown in the literature for spiking such a low number of cells," Nagrath said.

The team counted the captured cancer cells by tagging them with fluorescent molecules and viewing them through a microscope. These tags made the cancer cells easy to distinguish from accidentally caught blood cells. They also grew breast cancer cells over six days, using an electron microscope to see how they spread across the gold flowers.

"When you have individual cells, the amount of material in each cell is often so small that it's hard to develop molecular assays," Wicha said. "This device allows the cells to be grown into larger quantities so you can do a genetic analysis more easily."

The chip could capture pancreatic, breast and lung cancer cells from patient samples. Nagrath was surprised that the device was able to catch about four tumor cells per milliliter of blood from the lung cancer patients, even though they had the early-stage form of the disease.

Working in a team that comprises both engineers and medical professionals at U-M, Nagrath is optimistic that the new technique could reach clinics in three years.

The paper is titled "Sensitive capture of circulating tumor cells by functionalized graphene oxide nanosheets." The university is pursuing patent protection for the intellectual property and is seeking commercialization partners to help bring the technology to market.

####

For more information, please click here

Contacts:
Kate McAlpine

734-763-4386

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Sunitha Nagrath:

Translational Oncology Program:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Microfluidics/Nanofluidics

Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project