Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Liquid biopsy could improve cancer diagnosis and treatment

Abstract:
A microfluidic chip developed at the University of Michigan is among the best at capturing elusive circulating tumor cells from blood—and it can support the cells' growth for further analysis.

Liquid biopsy could improve cancer diagnosis and treatment

Ann Arbor, MI | Posted on September 30th, 2013

The device, believed to be the first to pair these functions, uses the advanced electronics material graphene oxide. In clinics, such a device could one day help doctors diagnose cancers, give more accurate prognoses and test treatment options on cultured cells without subjecting patients to traditional biopsies.

"If we can get these technologies to work, it will advance new cancer drugs and revolutionize the treatment of cancer patients," said Dr. Max Wicha, director of the U-M Cancer Center and co-author of a paper on the new device, published online this week in Nature Nanotechnology.

"Circulating tumor cells will play a significant role in the early diagnosis of cancer and to help us understand if treatments are working in our cancer patients by serving as a 'liquid' biopsy to assess treatment responses in real time," said co-author Dr. Diane Simeone, the Lazar J. Greenfield Professor of Surgery at the U-M Medical School and director of the Translational Oncology Program.

"Studies of circulating tumor cells will also help us understand the basic biologic mechanisms by which cancer cells metastasize or spread to distant organs—the major cause of death in cancer patients."

Yet these cells aren't living up to their promise in medicine because they are so difficult to separate from a blood sample, the researchers say. In the blood of early-stage cancer patients, they account for less than one in every billion cells, so catching them is tougher than finding the proverbial needle in a haystack.

"I can burn the haystack or use a huge magnet," said Sunitha Nagrath, an assistant professor of chemical engineering, who led the research. "When it comes to circulating tumor cells, they almost look like—feel like—any other blood cell."

On their microfluidic chip, Nagrath's team grew dense forests of molecular chains, each equipped with an antibody to grab onto cancer cells.

Even after the cells are caught, it's still hard to run a robust analysis on just a handful of them, the researchers say. That's why this demonstration of highly sensitive tumor cell capture, combined with the ability to grow the cells in the same device, is so promising.

Hyeun Joong Yoon, a postdoctoral researcher in the Nagrath lab with a background in electrical engineering, was instrumental in making the microfluidic chip. He started with a silicon base and added a grid of nearly 60,000 flat gold shapes, like four-petaled flowers, each no wider than a strand of hair.

The gold flowers naturally attracted a relatively new material called graphene oxide. These sheets of carbon and oxygen, just a few atoms thick, layered themselves over the gold. This layered formation allowed the team to grow the tumor-cell-catching molecular chains so densely.

"It's almost like each graphene has many nano-arms to capture cells," Nagrath said.

To test the device, the team ran one-milliliter samples of blood through the chip's thin chamber. Even when they had added just three-to-five cancer cells to the 5-10 billion blood cells, the chip was able to capture all of the cells in the sample half the time, with an average of 73 percent over 10 trials.

"That's the highest anybody has shown in the literature for spiking such a low number of cells," Nagrath said.

The team counted the captured cancer cells by tagging them with fluorescent molecules and viewing them through a microscope. These tags made the cancer cells easy to distinguish from accidentally caught blood cells. They also grew breast cancer cells over six days, using an electron microscope to see how they spread across the gold flowers.

"When you have individual cells, the amount of material in each cell is often so small that it's hard to develop molecular assays," Wicha said. "This device allows the cells to be grown into larger quantities so you can do a genetic analysis more easily."

The chip could capture pancreatic, breast and lung cancer cells from patient samples. Nagrath was surprised that the device was able to catch about four tumor cells per milliliter of blood from the lung cancer patients, even though they had the early-stage form of the disease.

Working in a team that comprises both engineers and medical professionals at U-M, Nagrath is optimistic that the new technique could reach clinics in three years.

The paper is titled "Sensitive capture of circulating tumor cells by functionalized graphene oxide nanosheets." The university is pursuing patent protection for the intellectual property and is seeking commercialization partners to help bring the technology to market.

####

For more information, please click here

Contacts:
Kate McAlpine

734-763-4386

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Sunitha Nagrath:

Translational Oncology Program:

Related News Press

News and information

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

Graphene

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Graphenea embarks on a new era April 16th, 2015

The Casiraghi Group, located at the University of Manchester's NanoScience and Spectroscopy Laboratory, use Raman in the study of graphene April 14th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Graphene looking promising for future spintronic devices April 10th, 2015

Microfluidics/Nanofluidics

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Chip Technology

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Graphenea embarks on a new era April 16th, 2015

Nanomedicine

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Discoveries

Ethylene Nanosorbent, a Novel Product to Decrease Agricultural Waste April 20th, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Better battery imaging paves way for renewable energy future April 20th, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Patents/IP/Tech Transfer/Licensing

Long Island Capital Alliance Announces Participants for Brookhaven National Laboratory Technology Transfer Capital Forum on May 8: Keynote Speaker Dr. Doon Gibbs, Director of Brookhaven National Laboratory April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Heat-Converting Material Patents Licensed April 8th, 2015

From tobacco to cyberwood March 31st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project