Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Liquid biopsy could improve cancer diagnosis and treatment

Abstract:
A microfluidic chip developed at the University of Michigan is among the best at capturing elusive circulating tumor cells from blood—and it can support the cells' growth for further analysis.

Liquid biopsy could improve cancer diagnosis and treatment

Ann Arbor, MI | Posted on September 30th, 2013

The device, believed to be the first to pair these functions, uses the advanced electronics material graphene oxide. In clinics, such a device could one day help doctors diagnose cancers, give more accurate prognoses and test treatment options on cultured cells without subjecting patients to traditional biopsies.

"If we can get these technologies to work, it will advance new cancer drugs and revolutionize the treatment of cancer patients," said Dr. Max Wicha, director of the U-M Cancer Center and co-author of a paper on the new device, published online this week in Nature Nanotechnology.

"Circulating tumor cells will play a significant role in the early diagnosis of cancer and to help us understand if treatments are working in our cancer patients by serving as a 'liquid' biopsy to assess treatment responses in real time," said co-author Dr. Diane Simeone, the Lazar J. Greenfield Professor of Surgery at the U-M Medical School and director of the Translational Oncology Program.

"Studies of circulating tumor cells will also help us understand the basic biologic mechanisms by which cancer cells metastasize or spread to distant organs—the major cause of death in cancer patients."

Yet these cells aren't living up to their promise in medicine because they are so difficult to separate from a blood sample, the researchers say. In the blood of early-stage cancer patients, they account for less than one in every billion cells, so catching them is tougher than finding the proverbial needle in a haystack.

"I can burn the haystack or use a huge magnet," said Sunitha Nagrath, an assistant professor of chemical engineering, who led the research. "When it comes to circulating tumor cells, they almost look like—feel like—any other blood cell."

On their microfluidic chip, Nagrath's team grew dense forests of molecular chains, each equipped with an antibody to grab onto cancer cells.

Even after the cells are caught, it's still hard to run a robust analysis on just a handful of them, the researchers say. That's why this demonstration of highly sensitive tumor cell capture, combined with the ability to grow the cells in the same device, is so promising.

Hyeun Joong Yoon, a postdoctoral researcher in the Nagrath lab with a background in electrical engineering, was instrumental in making the microfluidic chip. He started with a silicon base and added a grid of nearly 60,000 flat gold shapes, like four-petaled flowers, each no wider than a strand of hair.

The gold flowers naturally attracted a relatively new material called graphene oxide. These sheets of carbon and oxygen, just a few atoms thick, layered themselves over the gold. This layered formation allowed the team to grow the tumor-cell-catching molecular chains so densely.

"It's almost like each graphene has many nano-arms to capture cells," Nagrath said.

To test the device, the team ran one-milliliter samples of blood through the chip's thin chamber. Even when they had added just three-to-five cancer cells to the 5-10 billion blood cells, the chip was able to capture all of the cells in the sample half the time, with an average of 73 percent over 10 trials.

"That's the highest anybody has shown in the literature for spiking such a low number of cells," Nagrath said.

The team counted the captured cancer cells by tagging them with fluorescent molecules and viewing them through a microscope. These tags made the cancer cells easy to distinguish from accidentally caught blood cells. They also grew breast cancer cells over six days, using an electron microscope to see how they spread across the gold flowers.

"When you have individual cells, the amount of material in each cell is often so small that it's hard to develop molecular assays," Wicha said. "This device allows the cells to be grown into larger quantities so you can do a genetic analysis more easily."

The chip could capture pancreatic, breast and lung cancer cells from patient samples. Nagrath was surprised that the device was able to catch about four tumor cells per milliliter of blood from the lung cancer patients, even though they had the early-stage form of the disease.

Working in a team that comprises both engineers and medical professionals at U-M, Nagrath is optimistic that the new technique could reach clinics in three years.

The paper is titled "Sensitive capture of circulating tumor cells by functionalized graphene oxide nanosheets." The university is pursuing patent protection for the intellectual property and is seeking commercialization partners to help bring the technology to market.

####

For more information, please click here

Contacts:
Kate McAlpine

734-763-4386

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Sunitha Nagrath:

Translational Oncology Program:

Related News Press

Graphene

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Microfluidics/Nanofluidics

Dolomite and Lab on a Chip launch Productizing Science® Competition 2015 October 7th, 2014

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Chip Technology

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Nanomedicine

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Patents/IP/Tech Transfer/Licensing

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Aculon Receives Patent for Application of Enhanced Bonding Layers on Titanium October 9th, 2014

harmaEngine will join Nanobiotix’ pivotal trial for NBTXR3 in Soft Tissue Sarcoma to accelerate its development in Asia-Pacific: PharmaEngine to make milestone payment to Nanobiotix in October 2014 to recognize the value created October 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE