Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Paving the way for real-world nanotechnology products

200nm - Roll-to-roll nanoimprinting allows for the creation of patterned surfaces on flexible substrates such as plastic web
materials over large areas. In particular it is targeted for high throughput (meters per minute), room temperature processing with achievable feature size resolutions as small as 50 nm and below.
200nm - Roll-to-roll nanoimprinting allows for the creation of patterned surfaces on flexible substrates such as plastic web materials over large areas. In particular it is targeted for high throughput (meters per minute), room temperature processing with achievable feature size resolutions as small as 50 nm and below.

Abstract:
A*STAR's new Nanoimprint Foundry will bridge the gap between laboratory-based nanotechnologies and real-world products. This is the first time that Singapore nanotechnology suppliers and manufacturers have been brought together to speed up productisation of nanoimprinting, a technology that imbues ordinary surfaces with unique properties for applications in sectors like consumer care, biomedical devices, optics, filtration, displays and maritime.

Paving the way for real-world nanotechnology products

Singapore | Posted on September 29th, 2013

A*STAR's new Nanoimprint Foundry will bridge the gap between laboratory-based nanotechnologies and real-world products. This is the first time that Singapore nanotechnology suppliers and manufacturers have been brought together to speed up productisation of nanoimprinting, a technology that imbues ordinary surfaces with unique properties for applications in sectors like consumer care, biomedical devices, optics, filtration, displays and maritime.

Adhesives that leave no sticky residue, ‘skins' that keep medical instruments germ-free, new anti-reflective protectors for displays or surfaces that prevent barnacles from attaching to ships.These are just some of the products that nanoimprinting technology is capable of producing. A*STAR's Institute of Materials Research and Engineering (IMRE) and its partners launched a new Nanoimprint Foundry that will develop, test-bed and prototype specially engineered plastics and surfaces for the specific purpose of commercialising the technologies. Possible applications of nanoimprint technology include dry adhesives, aesthetic packaging, contact lenses, biomedical cell scaffolds, anti-frost surfaces and anti-bacteria materials.

The multi-party investment will bring together national research organisations, suppliers and manufacturers spanning the nanotechnology value chain, and government agencies to promote the technology. The Foundry is part of a masterplan spearheaded by A*STAR to push translational research and accelerate commercialisation of home-grown technologies. In partnership with other A*STAR research institutes, IMRE will work with companies like Toshiba Machines Co Ltd, EV Group, NTT Advanced Technology Corporation, NIL Technology ApS, Kyodo International Inc., micro resist technology GmbH, Nanoveu Pte Ltd and Solves Innovative Technology Pte Ltd to produce prototypes for real-world products and applications. The Foundry and its partners will also work closely with Singapore's Economic Development Board (EDB) and SPRING to promote its nanoimprint applications to industry as part of the plans to build up Singapore's high-value manufacturing capabilities.

"We can help companies develop up to 20,000 samples for proof-of-concept and pilot production allowing manufacturers to shorten the product cycle but minus the heavy capital R&D investment", said Dr Karen Chong, the IMRE scientist who is heading the Foundry. Dr Chong added that the Foundry will be a one-stop shop for companies seeking to conceive, design and develop solutions for new, revolutionary products based on the versatile nanoimprint technology.

"The Foundry gives us the tools for creating real products that target industry end users and ultimately consumers", explained Mr Masayuki Yagi, Director & General Manager, Advanced Machinery Business Unit, Toshiba Machines Co Ltd, Japan on why the company chose to participate in the initiative. "Toshiba Machines and the Foundry will aim to deliver innovative engineering solutions based on nanoimprint and be the best partner for leading industries".

According to Mr Koh Teng Kwee, Director of Solves Innovative Technology Pte Ltd, "Working with IMRE since ICON 1[1], I am sure IMRE's nanoimprint technology and know-how is now ready for industrial adoption. In my opinion, IMRE is able to provide everything needed for a new product realisation involving nanoimprinting."

"There is a billion-dollar, virtually untapped market for new advanced nanotechnology products that can make use of what the Foundry has to offer", said Prof Andy Hor, Executive Director for IMRE, adding that the initiative will hasten the industrialisation of nanoimprinting in this lucrative market segment. In consumer care for example, the global market for contact lenses - where nanoimprint technology can be used to produce new functionalities like multi-coloured lenses - is expected to grow to USD 11.7 billion by 2015[2].

"The Foundry is the first one-stop shop to pull different value chain partners together to offer solutions based on nanoimprint through equipment, moulds, materials and applications to end user companies", said Dr Tan Geok Leng, Executive Director of A*STAR's Science and Engineering Research Council which oversees a number of the research institutes dedicated to the physical sciences and engineering. "The new Foundry is part of Singapore's strategy to create a new, advanced high-value manufacturing sector to support its growing knowledge-based economy."

"As part of EDB's vision to position Singapore as an Advanced Manufacturing Hub, we will continue to work with companies to co-create and adopt advanced manufacturing technologies. We see this new Research Foundry as one of the key infrastructures to strengthen nanoscale-manufacturing capabilities in Singapore", said Mr Yi-Hsen Gian, Director (i3), Economic Development Board (EDB), Singapore.

The Foundry was launched on 30 September 2013 during a ceremony that also saw collaboration agreements signed between A*STAR and its industry partners.

####

About Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.


A*STAR oversees 20 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories. Please visit www.a-star.edu.sg.

About the Institute of Materials Research and Engineering (IMRE)

The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for sensors & Transducers, consumer care, organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally. For more information about IMRE, please visit www.imre.a-star.edu.sg.

A*STAR’s Nanoimprint Foundry

A*STAR’s Nanoimprint Foundry is an R&D based nanoimprint foundry dedicated to driving the applications and industrial adoption of nanoimprint as a transformative technology across multiple industry sectors. The Foundry is a co-development between Science and Engineering Research Council (SERC), Institute of Materials Research and Engineering (IMRE) and also Exploit Technologies Pte Ltd (ETPL) of the Agency for Science Technology and Research (A*STAR), with the participation of other multi-disciplinary A*STAR institutes and industry collaborators to enable the evolution of nanoimprint technology from the laboratory to the manufacturing floor.

For more information, please click here

Contacts:
Mr Eugene Low
Tel 65 6874 8491

Copyright © Agency for Science, Technology and Research (A*STAR)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Marine/Watercraft

New material to revolutionize water proofing September 12th, 2016

Display technology/LEDs/SS Lighting/OLEDs

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

Silicon nanoparticles instead of expensive semiconductors: Within an international collaboration, physicists of the Moscow State University replace expensive semiconductors with affordable silicon nanoparticles for display production September 9th, 2016

Low-cost and defect-free graphene: FAU researchers make key break-through September 7th, 2016

Lowering the cost and environmental footprint of white LEDs September 1st, 2016

Products

Particle Works launches range of high quality magnetic nanoparticles August 31st, 2016

Oxford Nanoimaging to provide desktop super-resolution microscopes May 10th, 2016

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 14th, 2016

Nanomedicine

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

Materials/Metamaterials

Chains of nanogold – forged with atomic precision September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Containing our 'electromagnetic pollution': MXene can protect mobile devices from electromagnetic interference September 13th, 2016

New material to revolutionize water proofing September 12th, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Water

Atomic scale pipes available on demand and by design September 9th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Alliances/Trade associations/Partnerships/Distributorships

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

SEMI and MSIG Join Together in Strategic Association Partnership: MEMS & Sensors Industry Group Brings New MEMS and Sensors Community to SEMI to Increase Combined Member Value September 15th, 2016

Leti and Oberthur Technologies Partner to Explore New Solutions in Fast-growing Digital Era September 12th, 2016

Synopsys Joins GLOBALFOUNDRIES’ FDXcelerator Partner Program to Enable Innovative Designs Using the FD-SOI Process: Program Gives Synopsys Access to GLOBALFOUNDRIES’ FDX Portfolio and Provides Customers with Tools that Support the Differentiated Features of FD-SOI September 8th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic