Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Densest array of carbon nanotubes grown to date: New technique could one day help improve the performance of microelectronics in devices ranging from batteries to spacecraft

Scanning electron microscope images are of CNT forests with low and high density.

Credit: Hisashi Sugime/U.Cambridge
Scanning electron microscope images are of CNT forests with low and high density.

Credit: Hisashi Sugime/U.Cambridge

Abstract:
Carbon nanotubes' outstanding mechanical, electrical and thermal properties make them an alluring material to electronics manufacturers. However, until recently scientists believed that growing the high density of tiny graphene cylinders needed for many microelectronics applications would be difficult.

Densest array of carbon nanotubes grown to date: New technique could one day help improve the performance of microelectronics in devices ranging from batteries to spacecraft

Washington, DC | Posted on September 20th, 2013

Now a team from Cambridge University in England has devised a simple technique to increase the density of nanotube forests grown on conductive supports about five times over previous methods. The high density nanotubes might one day replace some metal electronic components, leading to faster devices. The researchers report their finding in the journal Applied Physics Letters, which is produced by AIP Publishing.

"The high density aspect is often overlooked in many carbon nanotube growth processes, and is an unusual feature of our approach," says John Robertson, a professor in the electronic devices and materials group in the department of engineering at Cambridge. High-density forests are necessary for certain applications of carbon nanotubes, like electronic interconnects and thermal interface materials, he says.

Robertson and his colleagues grew carbon nanotubes on a conductive copper surface that was coated with co-catalysts cobalt and molybdenum. In a novel approach, the researchers grew at lower temperature than is typical which is applicable in the semiconductor industry. When the interaction of metals was analyzed by X-ray photoelectron spectroscopy, it revealed the creation of a more supportive substrate for the forests to root in. The subsequent nanotube growth exhibited the highest mass density reported so far.

"In microelectronics, this approach to growing high-density carbon nanotube forests on conductors can potentially replace and outperform the current copper-based interconnects in a future generation of devices," says Cambridge researcher Hisashi Sugime. In the future, more robust carbon nanotube forests may also help improve thermal interface materials, battery electrodes, and supercapacitors.

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology.

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports" by Hisashi Sugime, Santiago Esconjauregui, Junwei Yang, Lorenzo D'arsiť, Rachel A. Oliver, Sunil Bhardwaj, Cinzia Cepek and John Robertson appears in the journal Applied Physics Letters. See:

Related News Press

News and information

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Imaging

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chip Technology

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Nanotubes/Buckyballs/Fullerenes

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Cleaning up hybrid battery electrodes improves capacity and lifespan: New way of building supercapacitor-battery electrodes eliminates interference from inactive components April 22nd, 2016

Nature Photonics: Light source for quicker computer chips: Waveguide with integrated carbon nanotubes for conversion of electric signals into light / quicker computer chips are feasible / publication in Nature Photonics April 21st, 2016

Discoveries

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Superfast light source made from artificial atom April 28th, 2016

Materials/Metamaterials

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Announcements

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Tools

Exploring phosphorene, a promising new material April 29th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Bruker Introduces Dimension FastScan Pro Industrial AFM: Providing Nanometer-Resolution at High Scan Rates for up to 300-mm Samples April 26th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Adding some salt to the recipe for energy storage materials: Researchers use common table salt as growth template April 22nd, 2016

Cleaning up hybrid battery electrodes improves capacity and lifespan: New way of building supercapacitor-battery electrodes eliminates interference from inactive components April 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic