Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Tiny diamonds to boost treatment of chemoresistant leukemia: Novel discovery by scientists from NUS and UCLA enhances delivery and retention of leukemia drug, paving the way for nanodiamonds to be used for chemotherapeutics

By binding multiple molecules of Daunorubicin with nanodiamonds, scientists from NUS and UCLA managed to boost the delivery of the drug to leukemic cells and retain the drug within the cells to combat the cancer.

Credit: Han B. Man and Hansung Kim
By binding multiple molecules of Daunorubicin with nanodiamonds, scientists from NUS and UCLA managed to boost the delivery of the drug to leukemic cells and retain the drug within the cells to combat the cancer.

Credit: Han B. Man and Hansung Kim

Abstract:
By binding multiple molecules of a common leukemia drug with nanodiamonds, scientists from the National University of Singapore (NUS) and University of California, Los Angeles (UCLA) managed to boost the delivery of the drug to leukemic cells and retain the drug within the cells to combat the cancer.

Tiny diamonds to boost treatment of chemoresistant leukemia: Novel discovery by scientists from NUS and UCLA enhances delivery and retention of leukemia drug, paving the way for nanodiamonds to be used for chemotherapeutics

Singapore | Posted on September 11th, 2013

This novel discovery, reported for the first time, addresses one of the major challenges in the treatment of leukemia where the cancer cells develop ways to pump drugs out of the body before they can do their job, particularly after they are exposed to chemotherapeutics.

Dr Edward Chow, Principal Investigator at the Cancer Science Institute of Singapore and Assistant Professor at the Department of Pharmacology, Yong Loo Lin School of Medicine at NUS, in collaboration with Professor Dean Ho of the UCLA School of Dentistry, this innovation shows promise for greater efficacy in treating leukemia, particularly in non-adherent cells.

The findings were first published online in the medical journal Nanomedicine: Nanotechnology, Biology, and Medicine.

When leukemia becomes drug-resistant

Daunorubicin is currently one of the most common drugs used to treat leukemia. The drug works by slowing down or stopping cancer cells from growing, causing many of them to die. It is also common, however, for leukemia to become resistant to this drug after treatment.

One mechanism by which this opposition, commonly known as chemoresistance, happens is through the expression of drug transporter pumps in leukemia cells that actively pump out chemotherapeutics, including Daunorubicin.

Innovative use of nanodiamonds

Current approaches to neutralising chemoresistance have centred on developing competitive inhibitors. These efforts have limited success, with challenges like high toxicity levels and less-than-promising results during clinical trials.

The team of scientists from NUS and UCLA turned to nanodiamonds, which are tiny, carbon-based particles that are 2 to 8 nanometers in diameter, as an option to address chemoresistance. Dr Chow studied the biological basis of how nanodiamonds can potentially overcome chemoresistance.

The scientists bound the surfaces of nanodiamonds with Daunorubicin, and the hybrid nanodiamond-drug complexes were introduced to leukemic cells. The research team found that nanodiamonds could carry the drug to the cancer cells without being pumped out. Due to their non-invasive sizes and unique surface features, nanodiamonds can be easily released without blocking up blood vessels.

Dr Chow said, "The use of nanodiamonds offers a promising combination of biocompatibility and the capability to enhance therapeutic efficacy. Furthermore, our initial safety tests both in vitro and in vivo indicate that they are well tolerated which is a promising step towards continued translational development."

"Nanodiamonds are promising therapeutic vehicles, and one of our current goals is to determine which drugs would be optimally delivered by the nanodiamond towards specific disease models that would best benefit a patient in the future," added Prof Ho, who is with the Division of Oral Biology and Medicine and is also Co-Director of the Jane and Jerry Weintraub Center for Reconstructive Biotechnology at the UCLA School of Dentistry. Dr Ho is also a Professor of Bioengineering at UCLA.

Further Research

The team noted that further development and safety evaluation of nanodiamond systems are necessary to realise their full potential. To further the research, the multi-disciplinary team of collaborators will be evaluating the drug-delivery complexes in clinical settings. They hope that their work can be translated into the clinic for use against leukemia that does not respond to Daunorubicin treatment. They are also look at applying the binding properties of nanodiamonds to other drugs.

####

For more information, please click here

Contacts:
Carolyn Fong

65-651-65399

Copyright © National University of Singapore

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Nanomedicine

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Discoveries

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Research partnerships

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE