Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Stanford Scientists Use DNA to Assemble a Transistor From Graphene

To the right is a honeycomb of graphene atoms. To the left is a double strand of DNA. The white spheres represent copper ions integral to the chemical assembly process. The fire represents the heat that is an essential ingredient in the technique.Anatoliy Sokolov
To the right is a honeycomb of graphene atoms. To the left is a double strand of DNA. The white spheres represent copper ions integral to the chemical assembly process. The fire represents the heat that is an essential ingredient in the technique.

Anatoliy Sokolov

Abstract:
Graphene is a sheet of carbon atoms arrayed in a honeycomb pattern, just a single atom thick. It could be a better semiconductor than silicon - if we could fashion it into ribbons 20 to 50 atoms wide. Could DNA help?

Stanford Scientists Use DNA to Assemble a Transistor From Graphene

Stanford, CA | Posted on September 7th, 2013

Tom Abate | Stanford Engineering

DNA is the blueprint for life. Could it also become the template for making a new generation of computer chips based not on silicon, but on an experimental material known as graphene?

That's the theory behind a process that Stanford chemical engineering professor Zhenan Bao reveals in Nature Communications.

Bao and her co-authors, former post-doctoral fellows Anatoliy Sokolov and Fung Ling Yap, hope to solve a problem clouding the future of electronics: consumers expect silicon chips to continue getting smaller, faster and cheaper, but engineers fear that this virtuous cycle could grind to a halt.

Why has to do with how silicon chips work.

Everything starts with the notion of the semiconductor, a type of material that can be induced to either conduct or stop the flow of electricity. Silicon has long been the most popular semiconductor material used to make chips.

The basic working unit on a chip is the transistor. Transistors are tiny gates that switch electricity on or off, creating the zeroes and ones that run software.

To build more powerful chips, designers have done two things at the same time: they've shrunk transistors in size and also swung those gates open and shut faster and faster.

The net result of these actions has been to concentrate more electricity in a diminishing space. So far that has produced small, faster, cheaper chips. But at a certain point, heat and other forms of interference could disrupt the inner workings of silicon chips.

"We need a material that will let us build smaller transistors that operate faster using less power," Bao said.

Graphene has the physical and electrical properties to become a next-generation semiconductor material - if researchers can figure out how to mass-produce it.

Graphene is a single layer of carbon atoms arranged in a honeycomb pattern. Visually it resembles chicken wire. Electrically this lattice of carbon atoms is an extremely efficient conductor.

Bao and other researchers believe that ribbons of graphene, laid side-by-side, could create semiconductor circuits. Given the material's tiny dimensions and favorable electrical properties, graphene nano ribbons could create very fast chips that run on very low power, she said.

"However, as one might imagine, making something that is only one atom thick and 20 to 50 atoms wide is a significant challenge," said co-author Sokolov.

To handle this challenge, the Stanford team came up with the idea of using DNA as an assembly mechanism.

Physically, DNA strands are long and thin, and exist in roughly the same dimensions as the graphene ribbons that researchers wanted to assemble.

Chemically, DNA molecules contain carbon atoms, the material that forms graphene.

The real trick is how Bao and her team put DNA's physical and chemical properties to work.

The researchers started with a tiny platter of silicon to provide a support (substrate) for their experimental transistor. They dipped the silicon platter into a solution of DNA derived from bacteria and used a known technique to comb the DNA strands into relatively straight lines.

Next, the DNA on the platter was exposed to a copper salt solution. The chemical properties of the solution allowed the copper ions to be absorbed into the DNA.

Next the platter was heated and bathed in methane gas, which contains carbon atoms. Once again chemical forces came into play to aid in the assembly process. The heat sparked a chemical reaction that freed some of the carbon atoms in the DNA and methane. These free carbon atoms quickly joined together to form stable honeycombs of graphene.

"The loose carbon atoms stayed close to where they broke free from the DNA strands, and so they formed ribbons that followed the structure of the DNA," Yap said.

So part one of the invention involved using DNA to assemble ribbons of carbon. But the researchers also wanted to show that these carbon ribbons could perform electronic tasks. So they made transistors on the ribbons.

"We demonstrated for the first time that you can use DNA to grow narrow ribbons and then make working transistors," Sokolov said.

The paper drew praise from UC Berkeley associate professor Ali Javey, an expert in the use of advanced materials and next-generation electronics.

"This technique is very unique and takes advantage of the use of DNA as an effective template for controlled growth of electronic materials," Javey said. "In this regard the project addresses an important research need for the field."

Bao said the assembly process needs a lot of refinement. For instance, not all of the carbon atoms formed honeycombed ribbons a single atom thick. In some places they bunched up in irregular patterns, leading the researchers to label the material graphitic instead of graphene.

Even so, the process, about two years in the making, points toward a strategy for turning this carbon-based material from a curiosity into a serious contender to succeed silicon.

"Our DNA-based fabrication method is highly scalable, offers high resolution and low manufacturing cost," said co-author Yap. "All these advantages make the method very attractive for industrial adoption."

The experiment was supported in part by the National Science Foundation and the Stanford Global Climate and Energy Program.

Tom Abate is associate director of communications in the Stanford School of Engineering.

####

For more information, please click here

Contacts:
Tom Abate
Stanford Engineering

650-736-2245

Copyright © Stanford School of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Graphene/ Graphite

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Graphene sheets capture cells efficiently: New method could enable pinpoint diagnostics on individual blood cells March 3rd, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Chip Technology

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Self Assembly

Nanocages for gold particles: what is happening inside? March 16th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Discoveries

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Nanobiotechnology

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project