Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Semi-Industrial Plan Devised to Produce Inorganic Metallic Nano Oxides

Abstract:
Iranian chemical engineering experts presented an industrial approach to reduce the agglomeration of the particles during the fluidization process by studying the fluidization behavior of silver oxide nanoparticle agglomerates and using computational fluid dynamics (CFD) simulation method.

Semi-Industrial Plan Devised to Produce Inorganic Metallic Nano Oxides

Tehran, Iran | Posted on September 5th, 2013

Results of this research can be widely used in various industries such as petrochemical engineering, pharmaceutics, production of chemical powders at semi-industrial and industrial scales, color industry and ceramics.

The research was carried out to investigate the fluidization behavior of silver oxide nanoparticle agglomerates to present approaches to reduce the amount of particle agglomeration during the fluidization process through the two viewpoints of laboratorial scale and computational fluid dynamics (CFD) simulation.

In order to carry out the research, silver oxide nanoparticles with initial particle size of about 30 nm, which were produced from a chemical solution, were at the first stage inserted into a fluidized bed then dried by blowing warm air into the bed. The undesirable agglomeration phenomenon during the drying process and the fluidization of nanoparticles causes the particles to stick together and to form larger bulks. As a result, the size of the secondary particles increases and their effective properties reduce. Therefore, in order to overcome this problem, the researchers tried to minimize the amount of agglomeration during the fluidization of the particles by improving the hydrodynamic properties of the bed, including porosity, velocity of inlet gas, initial filling amount, and geometric design of the bed.

Among the most important results of the research, mention can be made of the determination of optimum hydrodynamic conditions to decrease the amount of agglomeration of nanoparticles at laboratorial and simulation scales, and the investigation of the existing hydrodynamic models to study the fluidization behavior of silver oxide nanoparticle agglomerates to be used in the semi-industrial production of chemical powders.

Results of the research have been published on 10 May 2013 in Industrial Engineering Chemistry Research, vol. 52, issue 22. For more information about the details of the research, study the full article on pages 7569-7578 on the same journal.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Chemistry

Chemical cages: New technique advances synthetic biology February 10th, 2016

Graphene decharging and molecular shielding February 8th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Industrial

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

New sensors to combat the proliferation of bacteria in very high-humidity environments January 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic