Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Semi-Industrial Plan Devised to Produce Inorganic Metallic Nano Oxides

Abstract:
Iranian chemical engineering experts presented an industrial approach to reduce the agglomeration of the particles during the fluidization process by studying the fluidization behavior of silver oxide nanoparticle agglomerates and using computational fluid dynamics (CFD) simulation method.

Semi-Industrial Plan Devised to Produce Inorganic Metallic Nano Oxides

Tehran, Iran | Posted on September 5th, 2013

Results of this research can be widely used in various industries such as petrochemical engineering, pharmaceutics, production of chemical powders at semi-industrial and industrial scales, color industry and ceramics.

The research was carried out to investigate the fluidization behavior of silver oxide nanoparticle agglomerates to present approaches to reduce the amount of particle agglomeration during the fluidization process through the two viewpoints of laboratorial scale and computational fluid dynamics (CFD) simulation.

In order to carry out the research, silver oxide nanoparticles with initial particle size of about 30 nm, which were produced from a chemical solution, were at the first stage inserted into a fluidized bed then dried by blowing warm air into the bed. The undesirable agglomeration phenomenon during the drying process and the fluidization of nanoparticles causes the particles to stick together and to form larger bulks. As a result, the size of the secondary particles increases and their effective properties reduce. Therefore, in order to overcome this problem, the researchers tried to minimize the amount of agglomeration during the fluidization of the particles by improving the hydrodynamic properties of the bed, including porosity, velocity of inlet gas, initial filling amount, and geometric design of the bed.

Among the most important results of the research, mention can be made of the determination of optimum hydrodynamic conditions to decrease the amount of agglomeration of nanoparticles at laboratorial and simulation scales, and the investigation of the existing hydrodynamic models to study the fluidization behavior of silver oxide nanoparticle agglomerates to be used in the semi-industrial production of chemical powders.

Results of the research have been published on 10 May 2013 in Industrial Engineering Chemistry Research, vol. 52, issue 22. For more information about the details of the research, study the full article on pages 7569-7578 on the same journal.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

Chemistry

Chemists make new silicon-based nanomaterials March 27th, 2015

First proof of isolated attosecond pulse generation at the carbon K-edge March 20th, 2015

Click! That's how modern chemistry bonds nanoparticles to a substrate March 19th, 2015

Discoveries

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Industrial

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

Nanodevice Invented in Iran to Detect Hydrogen Sulfide in Oil, Gas Industry March 20th, 2015

Industrial Production of Nano-Based PVC Products in Iran March 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE