Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ARPA-E awards IIT-Argonne team $3.4 M for breakthrough battery technology May more than double the range of electric vehicles, simplify refueling

Researchers (pictured left to right) Dileep Singh, Carlo Segre, Mike Duoba, John Katsoudas, Elena Timofeeva, and Chris Pelliccione stand by one of the plug-in electric vehicles they hope to revolutionize with the IIT-Argonne “nanoelectrofuel” flow battery technology they are developing.
Researchers (pictured left to right) Dileep Singh, Carlo Segre, Mike Duoba, John Katsoudas, Elena Timofeeva, and Chris Pelliccione stand by one of the plug-in electric vehicles they hope to revolutionize with the IIT-Argonne “nanoelectrofuel” flow battery technology they are developing.

Abstract:
Carlo Segre, Duchossois Leadership Professor of Physics at Illinois Institute of Technology, has received a $3.4 million award from the U.S. Department of Energy's Advanced Research Projects Agency (ARPA-E) to develop a breakthrough battery technology that may more than double the current range of electric vehicles (EV), increase safety, reduce costs and simplify recharging.

ARPA-E awards IIT-Argonne team $3.4 M for breakthrough battery technology May more than double the range of electric vehicles, simplify refueling

Chicago, IL | Posted on September 4th, 2013

Segre and his collaborators John Katsoudas, also of IIT, and Elena Timofeeva, Dileep Singh and Michael Duoba of Argonne National Laboratory will develop a prototype for a rechargeable "nanoelectrofuel" flow battery that may extend the range of EVs to at least 500 miles and provide a straightforward and rapid method of refueling. Current EV ranges are 100-200 miles, with recharging taking up to eight hours.

Flow batteries, which store chemical energy in external tanks instead of within the battery container, are generally low in energy density and therefore not used for transportation applications. The IIT-Argonne nanoelectrofuel flow battery concept will use a high-energy density "liquid" with battery-active nanoparticles to dramatically increase energy density while ensuring stability and low-resistance flow within the battery.

"I am delighted by this award, not only because of the quality and importance of the proposed research but also as another example of the longstanding and effective collaboration between IIT and the world-class researchers and facilities at Argonne," said Russell Betts, dean of the College of Science at IIT.

Segre's expertise is in the structure and properties of materials using synchrotron radiation techniques. He has a wide variety of ongoing research projects, including fuel-cell catalysts and battery materials. Segre is deputy director of the Materials Research Collaborative Access Team (MR-CAT) beamline at the Advanced Photon Source (APS), located at Argonne; and director of the Center for Synchrotron Radiation Research and Instrumentation (CSRRI) at IIT.

Katsoudas and Timofeeva began their work on the IIT-Argonne nanoelectrofuel flow battery at Argonne, leveraging Timofeeva's expertise in nanofluids engineering and electrochemistry. Katsoudas is an expert in instrumentation design, automation of experiments and materials characterization.

Singh will bring to bear on the project his knowledge of how nanoparticle-fluid interaction effects the thermal management and behavior of nanoparticles in the IIT-Argonne nanoelectrofuel flow battery. Duoba's expertise in vehicle systems and EV testing, in particular, will provide critical guidance in the development of a nanoelectrofuel battery prototype for EV applications.

The IIT award is one of 22 projects across the country awarded a total of $36 million through the DOE's Advanced Research Projects Agency-Energy Robust Affordable Next Generation EV Storage (RANGE) program, which seeks to develop innovative EV battery chemistries, architectures and designs. ARPA-E was officially authorized in 2007 and first funded in 2009. The agency invests in high-potential, high-impact energy technologies that are too early for private sector investment.

IIT and Argonne will share the funding award to continue their research.

####

About Illinois Institute of Technology
Founded in 1890, IIT is a Ph.D.-granting university offering degrees in engineering, sciences, architecture, psychology, design, humanities, business, and law. IIT's interprofessional, technology-focused curriculum is designed to advance knowledge through research and scholarship, to cultivate invention improving the human condition, and to prepare students from throughout the world for a life of professional achievement, service to society, and individual fulfillment. Visit www.iit.edu.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Patricia Cronin
Illinois Institute of Technology
(312)567-3132


Angela Hardin
Argonne National Laboratory
(630) 252-5501

Copyright © Illinois Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Laboratories

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Automotive/Transportation

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

A Phone That Charges in Seconds? UCF Scientists Bring it Closer to Reality November 21st, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Research partnerships

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project