Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers figure out how to 'grow' carbon nanotubes with specific atomic structures: From plastics to silicon to nanotubes? Study describes breakthrough in next-generation material

Abstract:
Move over, silicon. In a breakthrough in the quest for the next generation of computers and materials, researchers at USC have solved a longstanding challenge with carbon nanotubes: how to actually build them with specific, predictable atomic structures.

Researchers figure out how to 'grow' carbon nanotubes with specific atomic structures: From plastics to silicon to nanotubes? Study describes breakthrough in next-generation material

Los Angeles, CA | Posted on August 26th, 2013

"We are solving a fundamental problem of the carbon nanotube," said Chongwu Zhou, professor in the Ming Hsieh Department of Electrical Engineering at the USC Viterbi School of Engineering and corresponding author of the study published August 23 in the journal Nano Letters. "To be able to control the atomic structure, or chirality, of nanotubes has basically been our dream, a dream in the nanotube field."

If this is an age built on silicon, then the next one may be built on carbon nanotubes, which have shown promise in everything from optics to energy storage to touch screens. Not only are nanotubes transparent, but this research discovery on how to control the atomic structure of nanotubes will pave the way for computers that are smaller, faster and more energy efficient than those reliant on silicon transistors.

"We are now working on scale up the process," Zhou said. "Our method can revoutionize the field and significantly push forward the real applications of nanotube in many fields."

Until now, scientists were unable to "grow" carbon nanotubes with specific attributes say metallic rather than semiconducting instead getting mixed, random batches and then sorting them. The sorting process also shortened the nanotubes significantly, making the material less practical for many applications.

For more than three years, the USC team has been working on the idea of using these short sorted nanotubes as "seeds" to grow longer nanotubes, extending them at high temperatures to get the desired atomic structure.

A paper last year by the same team in Nature Communications outlined the technique, and in the current Nano Letters paper, the researchers report on their latest major success: identifying the "growth recipes" for building carbon nanotubes with specific atomic structures.

"We identify the mechanisms required for mass amplification of nanotubes," said co-lead author Jia Liu, a doctoral student in chemistry at the USC Dornsife College of Letters, Arts and Sciences, recalling the moment when, alone in a dark room, she finally saw the spectral data supporting their method. "It was my Eureka moment."

"To understand nanotube growth behaviors allows us to produce larger amounts of nanotubes and better control that growth," she continued.

Each defined type of carbon nanotube has a frequency at which it expands and contracts. The researchers showed that the newly grown nanotubes had the same atomic structure by matching the Raman frequency.

"This is a very exciting field, and this was the most difficult problem," said co-lead author Bilu Liu, a postdoctoral research associate at the USC Viterbi School of Engineering. "I met Professor Zhou [senior author of the paper] at a conference and he said he wanted to tackle the challenge of controlling the atomic structure of nanotubes. That's what brought me to his lab, because it was the biggest challenge."

In addition, the study found that nanotubes with different structures also behave very differently during their growth, with some nanotube structures growing faster and others growing longer under certain conditions.

"Previously it was very difficult to control the chirality, or atomic structure, of nanotubes, particularly when using metal nanoparticles," Bilu Liu said. "The structures may look quite similar, but the properties are very different. In this paper we decode the atomic structure of nanotubes and show how to control precisely that atomic structure."

Additional authors of the study are Jialu Zhang of USC and Xiaomin Tu and Ming Zheng of the National Institute of Standards and Technology,.

The research was funded by the Office of Naval Research and the Defense Threat Reduction Agency of the U.S. Department of Defense.

####

For more information, please click here

Contacts:
Suzanne Wu

213-740-0252

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Chip Technology

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanotubes/Buckyballs

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Discoveries

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Military

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Tailored flexible illusion coatings hide objects from detection October 13th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE