Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > BIND Doses First Patient in a Phase 2 Clinical Study of BIND-014 in Prostate Cancer: Second of Two Phase 2 Clinical Studies Initiated with BIND-014 in 2013

Abstract:
BIND Therapeutics, a clinical-stage nanomedicine platform company developing targeted and programmable therapeutics called AccurinsTM, announced today that it has dosed the first patient in a Phase 2 clinical trial to assess the safety and efficacy of BIND-014, a PSMA-targeted Accurin containing docetaxel, as first-line therapy in patients with chemotherapy naÔve metastatic castrate-resistant prostate cancer.

BIND Doses First Patient in a Phase 2 Clinical Study of BIND-014 in Prostate Cancer: Second of Two Phase 2 Clinical Studies Initiated with BIND-014 in 2013

Cambridge, MA | Posted on August 19th, 2013

"While treatment options for metastatic castrate-resistant prostate cancer have advanced in recent years, primarily due to an increased understanding of androgen receptor biology, a significant unmet need remains for patients who fail hormonal agents," said Gregory Berk, MD, Chief Medical Officer of BIND Therapeutics. "We are pleased our Phase 1 trial of BIND-014 established the safety profile and appropriate Phase 2 dose, and we are advancing BIND-014 in clinical development to further evaluate it as a potential treatment option for patients who are in need of more effective therapies."

"Prostate-specific membrane antigen (PSMA) is an attractive target in patients with advanced prostate cancer. By delivering an established cytotoxic to this target, there is the potential to significantly improve the therapeutic index and patient outcomes," commented Howard Scher, MD, the Chief of the Genitourinary Oncology Service at Memorial Sloan-Kettering Cancer Center and Professor of Medicine at the Weill Cornell Medical College, and principal investigator of the study.

This 40 patient, open label, single arm multi-center study is designed to determine the efficacy of BIND-014 as measured by progression-free survival in patients with chemotherapy-naÔve metastatic castrate-resistant prostate cancer. For more specific information on the trial, including patient eligibility and clinical trial endpoints, please visit www.clinicaltrials.gov (NCT01812746).

BIND-014 represents the first Accurin nanomedicine to reach the clinic from BIND's Medicinal Nanoengineeringģ platform. BIND-014 targets PSMA, a target expressed on prostate cancer cells and the blood vessels of many types of non-prostate solid tumors, and contains docetaxel, a clinically-validated and widely used chemotherapy drug. Docetaxel is currently FDA-approved for the treatment of breast cancer, non-small cell lung cancer, metastatic castrate-resistant prostate cancer, head and neck cancer, and gastric cancer.

About Accurinsô

Accurins are BIND's targeted and programmable therapeutics, which are designed, utilizing BIND's medicinal nanoengineering platform, with specified physical and chemical characteristics to target specific cells or tissues and concentrate a therapeutic payload at the site of disease to enhance efficacy while minimizing adverse effects on healthy tissues. Accurins are polymeric nanoparticles that incorporate a therapeutic payload and are designed to have prolonged circulation within the bloodstream, enable targeting of the diseased tissue or cells, and provide for the controlled and timely release of the therapeutic payload. BIND has demonstrated in preclinical studies that Accurins can improve tumor growth suppression, achieve higher concentrations of the payload in tumors compared to the payload administered in conventional form, and have pharmacokinetics and tolerability differentiated from their therapeutic payloads.

####

About BIND Therapeutics
BIND Therapeutics is a clinical-stage nanomedicine platform company developing Accurins, its novel targeted therapeutics. BIND intends to leverage its medicinal nanoengineering platform to develop a pipeline of Accurins, initially in oncology, as well as Accurins in collaboration with biopharmaceutical companies. BINDís lead drug candidate, BIND-014, is an Accurin that targets PSMA and contains docetaxel, a clinically-validated and widely used cancer chemotherapy drug. BIND-014 is currently in Phase 2 clinical trials for non-small cell lung cancer and metastatic castrate resistant prostate cancer. To date in 2013, BIND has announced collaborations with Amgen, Inc., Pfizer Inc. and AstraZeneca AB to develop Accurins based on therapeutic payloads from their product pipelines. BINDís platform originated from the pioneering nanotechnology research at the Massachusetts Institute of Technology and Brigham and Womenís Hospital/Harvard Medical School of BINDís scientific founders and directors Dr. Robert Langer and Dr. Omid Farokhzad.

For more information, please click here

Contacts:
Media:
The Yates Network
Gina Nugent, 617-460-3579

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Govt.-Legislation/Regulation/Funding/Policy

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Nanomedicine

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Speed at its limits September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Announcements

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE