Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ORNL finding goes beyond surface of oxide films

This figure shows the spectroscopic measurement (current as a function of voltage) and this as a function of temperature.Reproduced by permission of The Royal Society of Chemistry
This figure shows the spectroscopic measurement (current as a function of voltage) and this as a function of temperature.

Reproduced by permission of The Royal Society of Chemistry

Abstract:
Better batteries, catalysts, electronic information storage and processing devices are among potential benefits of an unexpected discovery made by Oak Ridge National Laboratory scientists using samples isolated from the atmosphere.

ORNL finding goes beyond surface of oxide films

Oak Ridge, TN | Posted on August 14th, 2013

Researchers at the Department of Energy lab learned that key surface properties of complex oxide films are unaffected by reduced levels of oxygen during fabrication — an unanticipated finding with possible implications for the design of functional complex oxides used in a variety of consumer products, said Zheng Gai, a member of DOE's Center for Nanoscale Materials Sciences at ORNL.

The findings are detailed in a paper published in Nanoscale.

While the properties of the manganite material below the surface change as expected with the removal of oxygen, becoming an insulator rather than a metal, or conductor, researchers found that the sample showed remarkably stable electronic properties at the surface. Gai emphasized that the robustness of a surface matters because it is precisely the surface properties that determine, influence and affect the functionality of complex oxides in catalysis and batteries.

"With these materials being a promising alternative to silicon or graphene in electronic devices, the ever-decreasing size of such components makes their surface properties increasingly important to understand and control," Gai said.

While this work provides a fundamental understanding of a material used and researched for catalysts, oxide electronics and batteries, Gai and lead author Paul Snijders noted that it's difficult to speculate about possible impacts.

"I always say that in basic science we are discovering the alphabet," said Snijders, a member of ORNL's Materials Science and Technology Division. "How these letters will be designed into a useful technological book is hard to predict."

Making this discovery possible was the fact the authors did their experiment using scanning probe microscopy in a vacuum system with no exposure of the samples to the atmosphere. This contrasts with the conventional approach of growing a sample and then installing it in analysis equipment. During such a transfer, scientists expose the material to the water, nitrogen and carbon dioxide in the air.

By studying pristine samples, the ORNL team gained a surprising new understanding of the physics of the material surfaces — an understanding that is necessary to design new functional applications, Snijders said.

Other authors of the paper, titled "Persistent metal-insulator transition at the surface of an oxygen-deficient, epitaxial manganite film," are Min Gao, Hangwen Guo, Guixin Cao, Wolter Siemons and Thomas Ward of ORNL, Hongjun Gao of the Chinese Academy of Sciences and Jian Shen of Fudan University, China. Min Gao and Snijders contributed equally to this work, which was funded by DOE's Basic Energy Sciences. A portion of the research was conducted at the Center for Nanophase Materials Sciences.

####

About Oak Ridge National Laboratory
UT-Battelle manages ORNL for DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

About Center for Nanophase Materials Sciences

CNMS is one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers.

For more information, please click here

Contacts:
Ron Walli

865-576-0226

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper is available at:

Related News Press

News and information

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Imaging

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Leti Presents Optical-Equipment Curving Technology that Improves Performance, Cuts Costs: ‘Disruptive Approach’ for Imaging Applications Presented in Paper At Photonics West and Demonstrated in Leti’s Booth February 2nd, 2018

New technology aiming to improve trueness in the piezoelectric microscopy characterization of ceramic materials January 26th, 2018

New research yields super-strong aluminum alloy January 25th, 2018

Laboratories

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials: Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials February 8th, 2018

Physics

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Chip Technology

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

Memory Technology

New method enables high-resolution measurements of magnetism February 7th, 2018

Quantum cocktail provides insights on memory control: Experiments based on atoms in a shaken artificial crystal offer insight that might help in the development of future data-storage devices January 26th, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Discoveries

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Announcements

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Tools

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene February 6th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Round-the-clock power from smart bowties February 5th, 2018

NTU scientists create customizable, fabric-like power source for wearable electronics January 30th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project