Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Printed Electronics: the Winner is the Chemical Industry

Abstract:
By Dr Peter Harrop, Chairman, IDTechEx

The chemical industry will end up with most of the added value from printed electronics, one of the fastest growing technologies in the world. Worth over $50 billion to the materials and chemicals industry in 2024, the resultant devices and processes are of vital interest to industries as diverse as consumer goods, healthcare, aerospace, electronics, media and transit - a breadth that reduces business risk, particularly if common formulations can be identified.

Printed Electronics: the Winner is the Chemical Industry

Cambridge, MA | Posted on August 9th, 2013

The term "printed electronics" embraces electrics as well as devices that employ thin films likely to be printed or coated with customised fine chemicals in future. It is allowing electronics to be used in places it has never been before because it is variously transparent, stretchable, biodegradable or on and in paper for instance. It is improving existing electronics and electrics.

New report - de-risk your investment in fine chemicals

One new IDTechEx report is specifically designed to address the needs of chemical and materials companies and researchers - Functional Materials for Future Electronics: Metals, Inorganic & Organic Compounds, Graphene, CNT . It is essential for companies entering the new electrical and electronic product space, including printed electronics, to identify the most profitable and widely useful functional compounds and elements needed including allotropes of carbon - this report does that. Morphologies, form factors, derivatives, reasons, trends and niche opportunities are examined so suppliers can de-risk their investment.

Thirty-seven disruptive new device families important to the chemical industry are analysed, from forms of flexible photovoltaics to fuel cells, artificial muscle, memristors, metamaterials, new forms of lithium battery and nano- electromechanical systems NEMS. The report determines the most important elements and compounds needed for them and the electrical functions that they perform, plus future trends and commonalities between formulations. Several of the world's largest chemical companies asked for this.

For example, the widest future use of fine inorganic and organic compounds and carbon allotropes in the new electrics and electronics is, in order of breadth of application:

1: Copper
2: Aluminium
3: Silver
4: Polyethylenes
5: Carbon nanotubes
6: Graphene
7=: Indium compounds, Titanium compounds and Fluoropolymers
8: Silicon compounds
9=: Zinc compounds, Polythiophenes

On the other hand, those materials that are most versatile in electronic and electrical functions and therefore potentially providing widespread, high added value are identified as titanium compounds, zinc compounds and fluoropolymers. Thirdly IDTechEx identifies those that will be sold in the largest gross value over the next ten years, a category that includes those that are lithium and gallium compounds. The report profiles 113 global organizations involved in carbon allotropes for the new electronics and electrics. While manufacturers in North America seem to focus more on SWCNTs; Asia and Europe, with Japan on top, are leading the production of MWCNTs with Showa Denko, Mitsui and Hodogaya Chemical being the largest companies.

The new electronics and electrics spans nano- to very large devices. For example, one of the key enabling technologies - printed electronics - gives us viable electronic billboard sheets and huge areas of unrolled photovoltaics, soon in stretchable and conformal form. There are new device principles and chemistries. Whether it is totally new forms of flat screen displays or re-invented lithium-ion batteries with completely different anode, cathode and electrolyte compounds, those at the start of the value chain tend to make higher margins than those making the devices themselves.

Of course it is arbitrary whether some devices are really new because some are very old inventions in new forms or they have been in the wilderness for decades but are now ready for prime time. Others are experiments that may fail technically or in the marketplace. Others could choose a somewhat different choice of "new" device families but IDTechEx believes that they would reach much the same conclusions concerning the league table of substances required.

Key elements and compounds for the next ten years

IDTechEx finds that the metals that will be most widely used over the coming decade are aluminium, copper and silver, notably for conductive patterning in interconnects, electrodes, antennas and actuators. The inorganic elemental semiconductor most in demand in the new electronics will be silicon. Mainly, it takes new forms such as ink. The numerous functions of fine chemicals in the new electronics and electrics are annotated in the report; including adhesive, active electrode, active substrate, binder, barrier layer, electroactive material or dielectric elastomer, electrochemical membrane, electrolyte, electret, ferroelectric memory and many more.

Of the opportunities for inorganic compounds, IDTechEx discovers that lithium salts for lithium-ion batteries are particularly complex, changing in formulation and morphology and growing in large demand. IDTechEx therefore give a further analysis of this opportunity. In the report, there is comparison of 138 lithium-based rechargeable battery manufacturers and the 15 key compounds and elements they use and develop, with cathode and anode chemistry, electrolyte morphology, cell format and form of materials used.

For more information see Functional Materials for Future Electronics: Metals, Inorganic & Organic Compounds, Graphene, CNT.

World's largest event

Printed Electronics USA, the world's largest event on the topic and attended by more buyers than any other, is taking place in Santa Clara, CA, on November 20-21. It is co-located with many satellite events and parallel conference sessions on related topics such as graphene, OLEDs and supercapacitors. The international tradeshow, with more than 150 exhibitors, will cover all the technologies throughout the entire supply chain across all major component types. Learn more about IDTechEx's event here: www.PrintedElectronicsUSA.com
About IDTechEx
IDTechEx guides your strategic business decisions through its Research and Events services, helping you profit from emerging technologies. We provide independent research, business intelligence and advice to companies across the value chain based on our core research activities and methodologies providing data sought by business leaders, strategists and emerging technology scouts to aid their business decisions. To discuss your needs please contact us on or see www.IDTechEx.com.
IDTechEx Research Subscriptions and Market Intelligence Portal
Subscription services allow you to access a wide range of our technology and market research on a given topic or across topics, providing you with unlimited access to new related content throughout the subscription period at tremendous value.

One subscription option available is the Market Intelligence Portal. This provides you with timely business-critical market intelligence on emerging technologies, continually supporting you in assessing opportunity and making business decisions. Subscribers have access to two market research reports, regular webinars, weekly analytical articles, 3-5 weekly impartial company profiles, our raw forecast data, one hour of analyst time and company presentations gathered at our conferences.

To discover which subscription package is most suitable for you please see www.IDTechEx.com/subscriptions or to discuss your specific needs please email .

####

For more information, please click here

Contacts:

Copyright © IDTechEx

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Graphene/ Graphite

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Dynamic metasurfaces and metadevices empowered by graphene May 6th, 2022

NEMS

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

One string to rule them all April 17th, 2018

Chip Technology

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

Announcements

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Quantum network nodes with warm atoms June 24th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Energy

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Organic water splitters get a boost June 10th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

Fuel Cells

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Scavenger nanoparticles could make fuel cell-powered vehicles a reality April 1st, 2022

Graphene gets enhanced by flashing: Rice process customizes one-, two- or three-element doping for applications March 31st, 2022

Activating lattice oxygen in perovskite oxide to optimize fuel cell performance December 17th, 2021

Solar/Photovoltaic

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

USTC found a pathway to high-quality ZnSe quantum wires April 8th, 2022

Graphene crystals grow better under copper cover April 1st, 2022

Peering into precise ultrafast dynamics in matter March 25th, 2022

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

New 3D-Bioprinter + Bioink Use Living Cells Straight From Culture Plate: Cell models mimicking natural tissue topography herald new era for biomedical research April 13th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project