Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Printed Electronics: the Winner is the Chemical Industry

Abstract:
By Dr Peter Harrop, Chairman, IDTechEx

The chemical industry will end up with most of the added value from printed electronics, one of the fastest growing technologies in the world. Worth over $50 billion to the materials and chemicals industry in 2024, the resultant devices and processes are of vital interest to industries as diverse as consumer goods, healthcare, aerospace, electronics, media and transit - a breadth that reduces business risk, particularly if common formulations can be identified.

Printed Electronics: the Winner is the Chemical Industry

Cambridge, MA | Posted on August 9th, 2013

The term "printed electronics" embraces electrics as well as devices that employ thin films likely to be printed or coated with customised fine chemicals in future. It is allowing electronics to be used in places it has never been before because it is variously transparent, stretchable, biodegradable or on and in paper for instance. It is improving existing electronics and electrics.

New report - de-risk your investment in fine chemicals

One new IDTechEx report is specifically designed to address the needs of chemical and materials companies and researchers - Functional Materials for Future Electronics: Metals, Inorganic & Organic Compounds, Graphene, CNT . It is essential for companies entering the new electrical and electronic product space, including printed electronics, to identify the most profitable and widely useful functional compounds and elements needed including allotropes of carbon - this report does that. Morphologies, form factors, derivatives, reasons, trends and niche opportunities are examined so suppliers can de-risk their investment.

Thirty-seven disruptive new device families important to the chemical industry are analysed, from forms of flexible photovoltaics to fuel cells, artificial muscle, memristors, metamaterials, new forms of lithium battery and nano- electromechanical systems NEMS. The report determines the most important elements and compounds needed for them and the electrical functions that they perform, plus future trends and commonalities between formulations. Several of the world's largest chemical companies asked for this.

For example, the widest future use of fine inorganic and organic compounds and carbon allotropes in the new electrics and electronics is, in order of breadth of application:

1: Copper
2: Aluminium
3: Silver
4: Polyethylenes
5: Carbon nanotubes
6: Graphene
7=: Indium compounds, Titanium compounds and Fluoropolymers
8: Silicon compounds
9=: Zinc compounds, Polythiophenes

On the other hand, those materials that are most versatile in electronic and electrical functions and therefore potentially providing widespread, high added value are identified as titanium compounds, zinc compounds and fluoropolymers. Thirdly IDTechEx identifies those that will be sold in the largest gross value over the next ten years, a category that includes those that are lithium and gallium compounds. The report profiles 113 global organizations involved in carbon allotropes for the new electronics and electrics. While manufacturers in North America seem to focus more on SWCNTs; Asia and Europe, with Japan on top, are leading the production of MWCNTs with Showa Denko, Mitsui and Hodogaya Chemical being the largest companies.

The new electronics and electrics spans nano- to very large devices. For example, one of the key enabling technologies - printed electronics - gives us viable electronic billboard sheets and huge areas of unrolled photovoltaics, soon in stretchable and conformal form. There are new device principles and chemistries. Whether it is totally new forms of flat screen displays or re-invented lithium-ion batteries with completely different anode, cathode and electrolyte compounds, those at the start of the value chain tend to make higher margins than those making the devices themselves.

Of course it is arbitrary whether some devices are really new because some are very old inventions in new forms or they have been in the wilderness for decades but are now ready for prime time. Others are experiments that may fail technically or in the marketplace. Others could choose a somewhat different choice of "new" device families but IDTechEx believes that they would reach much the same conclusions concerning the league table of substances required.

Key elements and compounds for the next ten years

IDTechEx finds that the metals that will be most widely used over the coming decade are aluminium, copper and silver, notably for conductive patterning in interconnects, electrodes, antennas and actuators. The inorganic elemental semiconductor most in demand in the new electronics will be silicon. Mainly, it takes new forms such as ink. The numerous functions of fine chemicals in the new electronics and electrics are annotated in the report; including adhesive, active electrode, active substrate, binder, barrier layer, electroactive material or dielectric elastomer, electrochemical membrane, electrolyte, electret, ferroelectric memory and many more.

Of the opportunities for inorganic compounds, IDTechEx discovers that lithium salts for lithium-ion batteries are particularly complex, changing in formulation and morphology and growing in large demand. IDTechEx therefore give a further analysis of this opportunity. In the report, there is comparison of 138 lithium-based rechargeable battery manufacturers and the 15 key compounds and elements they use and develop, with cathode and anode chemistry, electrolyte morphology, cell format and form of materials used.

For more information see Functional Materials for Future Electronics: Metals, Inorganic & Organic Compounds, Graphene, CNT.

World's largest event

Printed Electronics USA, the world's largest event on the topic and attended by more buyers than any other, is taking place in Santa Clara, CA, on November 20-21. It is co-located with many satellite events and parallel conference sessions on related topics such as graphene, OLEDs and supercapacitors. The international tradeshow, with more than 150 exhibitors, will cover all the technologies throughout the entire supply chain across all major component types. Learn more about IDTechEx's event here: www.PrintedElectronicsUSA.com
About IDTechEx
IDTechEx guides your strategic business decisions through its Research and Events services, helping you profit from emerging technologies. We provide independent research, business intelligence and advice to companies across the value chain based on our core research activities and methodologies providing data sought by business leaders, strategists and emerging technology scouts to aid their business decisions. To discuss your needs please contact us on or see www.IDTechEx.com.
IDTechEx Research Subscriptions and Market Intelligence Portal
Subscription services allow you to access a wide range of our technology and market research on a given topic or across topics, providing you with unlimited access to new related content throughout the subscription period at tremendous value.

One subscription option available is the Market Intelligence Portal. This provides you with timely business-critical market intelligence on emerging technologies, continually supporting you in assessing opportunity and making business decisions. Subscribers have access to two market research reports, regular webinars, weekly analytical articles, 3-5 weekly impartial company profiles, our raw forecast data, one hour of analyst time and company presentations gathered at our conferences.

To discover which subscription package is most suitable for you please see www.IDTechEx.com/subscriptions or to discuss your specific needs please email .

####

For more information, please click here

Contacts:

Copyright © IDTechEx

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Graphene

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Simulations predict flat liquid May 21st, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

NEMS

Weighing -- and imaging -- molecules one at a time April 28th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

Chip Technology

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Announcements

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Energy

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Evident Thermoelectrics Acquires GMZ Energy: Investment Accelerates Launch Of Evident's Thermoelectric Modules For Waste Heat May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Fuel Cells

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

Expanding the reach of metallic glass April 22nd, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

Solar/Photovoltaic

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

Printing/Lithography/Inkjet/Inks

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Printing 3-D graphene structures for tissue engineering: A new ink formulation allows for the 3-D printing of graphene structures May 19th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project