Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Molecules form 2-D patterns never before observed: Nanoscience experiments produce elusive 5-vertex tilings

The 2-D tessellation pattern known as the "semiregular snub square tiling" stands out clearly in this image, which combines scanning tunneling microscopy with computer graphics. The pattern, observed in a surface architecture just one molecule thick, was formed by self-assembly of linear organic linkers, imaged as rods, and lanthanide cerium centers, visualized as bright protrusions. The area shown measures less than 25 nanometers across.

Credit: Barth Lab, copyright TUM
The 2-D tessellation pattern known as the "semiregular snub square tiling" stands out clearly in this image, which combines scanning tunneling microscopy with computer graphics. The pattern, observed in a surface architecture just one molecule thick, was formed by self-assembly of linear organic linkers, imaged as rods, and lanthanide cerium centers, visualized as bright protrusions. The area shown measures less than 25 nanometers across.

Credit: Barth Lab, copyright TUM

Abstract:
Tessellation patterns that have fascinated mathematicians since Johannes Kepler worked out their systematics 400 years ago - and that more recently have caught the eye of both artists and crystallographers - can now be seen in the laboratory. They first took shape on a surface more perfectly two-dimensional than any sheet of writing paper, a single layer of atoms and molecules atop an atomically smooth substrate. Physicists coaxed these so-called Kepler tilings "onto the page" through guided self-assembly of nanostructures.

Molecules form 2-D patterns never before observed: Nanoscience experiments produce elusive 5-vertex tilings

Munich, Germany | Posted on August 8th, 2013

The experiments were carried out by postdoctoral researcher David Ecija, PhD candidate Jose Ignacio Urgel and colleagues in the Physics Department of Technische Universitaet Muenchen (TUM), in collaboration with scientists in Karlsruhe and Zurich. They reported their findings in the Proceedings of the National Academy of Sciences.

Results open a new line of research

Organic molecules equipped with functional groups to express distinct linkages to metal atoms were deposited onto a smooth silver substrate under vacuum conditions. Subsequently the organic layer on this platform was exposed to an atomic flux of the lanthanide cerium. At a certain ratio of cerium atoms to molecules, self-assembly produced a symmetrical complex 2-D pattern described originally by Kepler and known today as the snub square tiling. Clearly identifiable through scanning tunneling microscopy was a recurring, five-vertex connecting element less than one nanometer across, a cerium-ligand coordination unit.

That the snub square tiling pattern had never been fabricated and seen at the molecular level by exploiting self-assembly protocols was interesting in itself. Beyond that, the physicists explain, every new surface architecture could potentially open the way to novel physics and chemistry, and until now five-vertex structures have proven elusive. In particular, the fact that the lanthanide element cerium played such a key role marks this as the beginning of a new line of research.

This is the first time the TUM researchers - members of Prof. Johannes Barth's Institute for Molecular Nanoscience and Chemical Physics of Interfaces - have coordinated molecules with a lanthanide, and the first time anyone has done this in 2-D. "And lanthanides are special," David Ecija explains. "They have very intriguing optical, magnetic, and chemical properties that could be interesting for nanoscience, and possibly also for nanotechnology. Now we have a new playground for research with the lanthanides, and beyond."

This research was supported by the European Research Council through Advanced Grant MolArt (Grant 247299) and Marie Curie Fellowship Grant 274842; the German Research Foundation (DFG) through Grant BA3395/2-1; and the TUM Institute for Advanced Study.

Publication

Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly. David Ecija, Jose I. Urgel, Anthoula C. Papageorgiou, Sushobhan Joshi, Willi Auwaerter, Ari P. Seitsonen, Svetlana Klyatskaya, Mario Ruben, Sybille Fischer, Saranyan Vijayaraghavan, Joachim Reichert, and Johannes V. Barth. PNAS 2013 Vol. 110 No. 17, pp. 6678-6681. DOI: 10.1073/pnas.1222713110

####

About Technische Universitaet Muenchen
Technische Universitaet Muenchen (TUM) is one of Europe's leading universities. It has roughly 500 professors, 9,000 academic and non-academic staff, and 32,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Excellence University" in 2006 and 2012 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). In both international and national rankings, TUM is rated as one of Germany's top universities. TUM is dedicated to the ideal of a top-level research-oriented entrepreneurial university. The university's global presence includes offices in Beijing (China), Brussels (Belgium), Cairo (Egypt) and Sao Paulo (Brazil). The German Institute of Science and Technology (GIST), founded in 2002 in Singapore, is the first research campus of a German university abroad.

For more information, please click here

Contacts:
David Ecija
Dept. of Physics
Technische Universitaet Muenchen
James-Franck-Str. 1
85748 Munich, Germany
T: +49 89 289 12320
E:
W: http://www.e20.ph.tum.de/

Patrick Regan

49-016-242-79876
Technische Universitaet Muenchen

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Govt.-Legislation/Regulation/Funding/Policy

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

It's not a shock: Better bandage promotes powerful healing November 29th, 2018

French Researchers Extend Reach of Mass Spectrometry with Nanomechanical Resonators: Neutral Mass Spectrometry’ Fills Gap In Existing Weighing Technologies November 27th, 2018

Three CEA Projects Awarded European Research Council Synergy Grants November 26th, 2018

Self Assembly

High-performance self-assembled catalyst for SOFC October 12th, 2018

New bio-inspired dynamic materials transform themselves: Highly dynamic synthetic superstructure provides new clues on brain, spinal cord injuries and neurological disease October 5th, 2018

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Discoveries

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Iran Develops Water-Repellent Nano-Paint December 5th, 2018

Announcements

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

New research could fine-tune the gene scissors CRISPR December 1st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project