Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Lawrence Livermore engineering team makes breakthrough in solar energy research

Black metal samples with different nanostructures thickness and coated with aluminum laying over a high reflective flat aluminum surface.
Black metal samples with different nanostructures thickness and coated with aluminum laying over a high reflective flat aluminum surface.

Abstract:
The use of plasmonic black metals could someday provide a pathway to more efficient photovoltaics (PV) -- the use of solar panels containing photovoltaic solar cells -- to improve solar energy harvesting, according to researchers at Lawrence Livermore National Laboratory (LLNL).

Lawrence Livermore engineering team makes breakthrough in solar energy research

Livermore, CA | Posted on July 30th, 2013

The LLNL Materials Engineering Division (MED) research team has made breakthroughs experimenting with black metals. These nanostructured metals are designed to have low reflectivity and high absorption of visible and infrared light. The MED research team recently published their black metals research results in a cover-page article in the May issue of Applied Physics Letters titled "Plasmonic Black Metals in Resonant Nanocavities."

Authored by MED physicist and research team member Mihail Bora, the article details the work of the nanophotonics and plasmonics research team led by LLNL engineer Tiziana Bond.

It describes the team's concept of black metals, which are not classic metals but can be thought of as an extension of the black silicon concept. When silicon is treated in a certain way, such as being roughened at the nanoscale level, it traps light by multiple reflections, increasing its solar absorption. This gives the silicon a black surface that's able to better trap the full sun's wavelength spectrum.

Similarly, black metals are produced by some sort of random nanostructuring -- either in gold or silver -- without guaranteeing a full, reliable and repeatable full solar absorption. However, Bond's team developed a method to improve and control the absorption efficiency and basically turn the metals as black as they want, allowing them to increase, on demand, the absorption of a higher quantity of solar wavelengths. Her team built nanopillar structures that are trapping and absorbing all the relevant wavelengths of the entire solar spectrum.

"Our article was picked for the cover story of Applied Physics Letters because it represents cutting-edge work in the area of plasmonics, the broadband operation obtained with a clear design and its implication for the photovoltaic yield," Bond said.

This new LLNL technology could one day be used in the energy harvesting industry such as PV. By incorporating metallic nanostructures with strong coupling of incident light, broad spectral and angular coverage, the LLNL team is providing a path for more efficient photovoltaics and thermovoltaics (a form of energy collection) by means of plasmon-exciton conversion, according to Bond and Bora.

####

About DOE/Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Ken Ma

925-423-7602

Copyright © DOE/Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article can be viewed at Applied Physics Letters. The teams' black metal research also will be featured in the September issue of Nature Photonics:

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Laboratories

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

CLAIRE brings electron microscopy to soft materials: Berkeley researchers develop breakthrough technique for noninvasive nanoscale imaging May 14th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Energy

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

FEI and Weatherford Enter Into Joint Agreement for Advanced Reservoir Characterization Services May 18th, 2015

Solar/Photovoltaic

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project