Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Water clears path for nanoribbon development: Rice University researchers create sub-10-nanometer graphene nanoribbon patterns

A graphene nanowire turns a corner. The nanowire was created via a process invented at Rice University in which a water layer only a few molecules thick acts as a mask.Credit: Tour Group/Rice University
A graphene nanowire turns a corner. The nanowire was created via a process invented at Rice University in which a water layer only a few molecules thick acts as a mask.

Credit: Tour Group/Rice University

Abstract:
New research at Rice University shows how water makes it practical to form long graphene nanoribbons less than 10 nanometers wide.

Water clears path for nanoribbon development: Rice University researchers create sub-10-nanometer graphene nanoribbon patterns

Houston, TX | Posted on July 30th, 2013

And it's unlikely that many of the other labs currently trying to harness the potential of graphene, a single-atom sheet of carbon, for microelectronics would have come up with the technique the Rice researchers found while they were looking for something else.

The discovery by lead author Vera Abramova and co-author Alexander Slesarev, both graduate students in the lab of Rice chemist James Tour, appears online this month in the American Chemical Society journal ACS Nano.

A bit of water adsorbed from the atmosphere was found to act as a mask in a process that begins with the creation of patterns via lithography and ends with very long, very thin graphene nanoribbons. The ribbons form wherever water gathers at the wedge between the raised pattern and the graphene surface.

The water formation is called a meniscus; it is created when the surface tension of a liquid causes it to curve. In the Rice process, the meniscus mask protects a tiny ribbon of graphene from being etched away when the pattern is removed.

Tour said any method to form long wires only a few nanometers wide should catch the interest of microelectronics manufacturers as they approach the limits of their ability to miniaturize circuitry. "They can never take advantage of the smallest nanoscale devices if they can't address them with a nanoscale wire," he said. "Right now, manufacturers can make small features, or make big features and put them where they want them. But to have both has been difficult. To be able to pattern a line this thin right where you want it is a big deal because it permits you to take advantage of the smallness in size of nanoscale devices."

Tour said water's tendency to adhere to surfaces is often annoying, but in this case it's essential to the process. "There are big machines that are used in electronics research that are often heated to hundreds of degrees under ultrahigh vacuum to drive off all the water that adheres to the inside surfaces," he said. "Otherwise there's always going to be a layer of water. In our experiments, water accumulates at the edge of the structure and protects the graphene from the reactive ion etching (RIE). So in our case, that residual water is the key to success.

"Nobody's ever thought of this before, and it's nothing we thought of," Tour said. "This was fortuitous."

Abramova and Slesarev had set out to fabricate nanoribbons by inverting a method developed by another Rice lab to make narrow gaps in materials. The original method utilized the ability of some metals to form a native oxide layer that expands and shields material just on the edge of the metal mask. The new method worked, but not as expected.

"We first suspected there was some kind of shadowing," Abramova said. But other metals that didn't expand as much, if at all, showed no difference, nor did varying the depth of the pattern. "I was basically looking for anything that would change something."

It took two years to develop and test the meniscus theory, during which the researchers also confirmed its potential to create sub-10-nanometer wires from other kinds of materials, including platinum. They also constructed field-effect transistors to check the electronic properties of graphene nanoribbons.

To be sure that water does indeed account for the ribbons, they tried eliminating its effect by first drying the patterns by heating them under vacuum, and then by displacing the water with acetone to eliminate the meniscus. In both cases, no graphene nanoribbons were created.

The researchers are working to better control the nanoribbons' width, and they hope to refine the nanoribbons' edges, which help dictate their electronic properties.

"With this study, we figured out you don't need expensive tools to get these narrow features," Tour said. "You can use the standard tools a fab line already has to make features that are smaller than 10 nanometers."

The Air Force Office of Scientific Research and the Office of Naval Research Multidisciplinary University Research Initiative Graphene Program supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Tour Group at Rice:

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Graphene

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Simulations predict flat liquid May 21st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Chip Technology

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

GLOBALFOUNDRIES Offers New Low-Power 28nm Solution for High-Performance Mobile and IoT Applications: Technology is the first in the industry to provide design enablement support optimized to meet low power requirements of RF SoCs May 20th, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Military

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Water

Nanosorbent Produced in Iran to Adsorb Tiny Amounts of Aromatic Hydrocarbon from Seawater May 18th, 2015

Iran Unveils New Home-Made Medicines, Nanotechnology Products May 14th, 2015

Plugging up leaky graphene: New technique may enable faster, more durable water filters May 7th, 2015

Production of Industrial Nano-Membrane for Water, Wastewater Purification Device in Iran May 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project