Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano Drug Crosses Blood-Brain Tumor Barrier, Targets Brain Tumor Cells and Blood Vessels

Balveen Kaur, PhD
Balveen Kaur, PhD

Abstract:
The blood-brain barrier protects the brain from poisons but also prevents drugs from reaching brain tumors; innovative new treatments are needed. This laboratory study shows that a nanotechnology drug called SapC-DOPS crosses that barrier and targets brain-tumor cells and retards growth of tumor blood vessels. The findings also show how the agent targets tumor cells and recommend its further development as a novel treatment for glioblastoma.

Nano Drug Crosses Blood-Brain Tumor Barrier, Targets Brain Tumor Cells and Blood Vessels

Columbus, OH | Posted on July 18th, 2013

An experimental drug in early development for aggressive brain tumors can cross the blood-brain tumor barrier, kill tumor cells and block the growth of tumor blood vessels, according to a study led by researchers at the Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James).

The laboratory and animal study also shows how the agent, called SapC-DOPS, targets tumor cells and blood vessels. The findings support further development of the drug as a novel treatment for brain tumors.

Glioblastoma multiforme is the most common and aggressive form of brain cancer, with a median survival of about 15 months. A major obstacle to improving treatment for the 3,470 cases of the disease expected in the United States this year is the blood-brain barrier, the name given to the tight fit of cells that make up the blood vessels in the brain. That barrier protects the brain from toxins in the blood but also keeps drugs in the bloodstream from reaching brain tumors.

"Few drugs have the capacity to cross the tumor blood-brain barrier and specifically target tumor cells," says principal investigator Balveen Kaur, PhD, associate professor of neurological surgery and chief of the Dardinger Laboratory of Neurosciences at the OSUCCC - James. "Our preclinical study indicates that SapC-DOPS does both and inhibits the growth of new tumor blood vessels, suggesting that this agent could one day be an important treatment for glioblastoma and other solid tumors."

The findings were published in a recent issue of the journal Molecular Therapy.

SapC-DOPS (saposin-C dioleoylphosphatidylserine), is a nanovesicle drug that has shown activity in glioblastoma, pancreatic cancer and other solid tumors in preclinical studies. The nanovesicles fuse with tumor cells, causing them to self-destruct by apoptosis.

Key findings of the study, which used two brain-tumor models, include:

SapC-DOPS binds with exposed patches of the phospholipid phosphatidylserine (PtdSer) on the surface of tumor cells;
Blocking PtdSer on cells inhibited tumor targeting;
SapC-DOPS strongly inhibited brain-tumor blood-vessel growth in cell and animal models, probably because these cells also have high levels of exposed PtdSer.
Hypoxic cells were sensitized to killing by SapC-DOPS.

"Based on our findings, we speculate that SapC-DOPS could have a synergistic effect when combined with chemotherapy or radiation therapy, both of which are known to increase the levels of exposed PtdSer on cancer cells," Kaur says.

Funding from the NIH/National Cancer Institute (grants CA158372, CA136017, CA136017, F31CA171733) and a New Drug State Key Project grant (009ZX09102-205) helped support this research.

Other researchers involved in this study were Jeffrey Wojton, Haritha Mathsyaraja, Walter H. Meisen, Nicholas Denton, Chang-Hyuk Kwon and Michael C. Ostrowski of The Ohio State University; and Zhengtao Chu, Lionel M.L. Chow, Mary Palascak, Robert Franco, Tristan Bourdeau, Sherry Thornton and Xiaoyang Qi of the University of Cincinnati.

####

About Ohio State University Medical Center
The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only four centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 228-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top cancer hospitals in the nation as ranked by U.S.News & World Report.

For more information, please click here

Contacts:
Darrell E. Ward
Wexner Medical Center
Public Affairs and Media Relations

614-293-3737

Copyright © Ohio State University Medical Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Govt.-Legislation/Regulation/Funding/Policy

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Nanomedicine

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Speed at its limits September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Discoveries

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Announcements

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Research partnerships

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

Research mimics brain cells to boost memory power September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE