Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano Drug Crosses Blood-Brain Tumor Barrier, Targets Brain Tumor Cells and Blood Vessels

Balveen Kaur, PhD
Balveen Kaur, PhD

Abstract:
The blood-brain barrier protects the brain from poisons but also prevents drugs from reaching brain tumors; innovative new treatments are needed. This laboratory study shows that a nanotechnology drug called SapC-DOPS crosses that barrier and targets brain-tumor cells and retards growth of tumor blood vessels. The findings also show how the agent targets tumor cells and recommend its further development as a novel treatment for glioblastoma.

Nano Drug Crosses Blood-Brain Tumor Barrier, Targets Brain Tumor Cells and Blood Vessels

Columbus, OH | Posted on July 18th, 2013

An experimental drug in early development for aggressive brain tumors can cross the blood-brain tumor barrier, kill tumor cells and block the growth of tumor blood vessels, according to a study led by researchers at the Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James).

The laboratory and animal study also shows how the agent, called SapC-DOPS, targets tumor cells and blood vessels. The findings support further development of the drug as a novel treatment for brain tumors.

Glioblastoma multiforme is the most common and aggressive form of brain cancer, with a median survival of about 15 months. A major obstacle to improving treatment for the 3,470 cases of the disease expected in the United States this year is the blood-brain barrier, the name given to the tight fit of cells that make up the blood vessels in the brain. That barrier protects the brain from toxins in the blood but also keeps drugs in the bloodstream from reaching brain tumors.

"Few drugs have the capacity to cross the tumor blood-brain barrier and specifically target tumor cells," says principal investigator Balveen Kaur, PhD, associate professor of neurological surgery and chief of the Dardinger Laboratory of Neurosciences at the OSUCCC - James. "Our preclinical study indicates that SapC-DOPS does both and inhibits the growth of new tumor blood vessels, suggesting that this agent could one day be an important treatment for glioblastoma and other solid tumors."

The findings were published in a recent issue of the journal Molecular Therapy.

SapC-DOPS (saposin-C dioleoylphosphatidylserine), is a nanovesicle drug that has shown activity in glioblastoma, pancreatic cancer and other solid tumors in preclinical studies. The nanovesicles fuse with tumor cells, causing them to self-destruct by apoptosis.

Key findings of the study, which used two brain-tumor models, include:

SapC-DOPS binds with exposed patches of the phospholipid phosphatidylserine (PtdSer) on the surface of tumor cells;
Blocking PtdSer on cells inhibited tumor targeting;
SapC-DOPS strongly inhibited brain-tumor blood-vessel growth in cell and animal models, probably because these cells also have high levels of exposed PtdSer.
Hypoxic cells were sensitized to killing by SapC-DOPS.

"Based on our findings, we speculate that SapC-DOPS could have a synergistic effect when combined with chemotherapy or radiation therapy, both of which are known to increase the levels of exposed PtdSer on cancer cells," Kaur says.

Funding from the NIH/National Cancer Institute (grants CA158372, CA136017, CA136017, F31CA171733) and a New Drug State Key Project grant (009ZX09102-205) helped support this research.

Other researchers involved in this study were Jeffrey Wojton, Haritha Mathsyaraja, Walter H. Meisen, Nicholas Denton, Chang-Hyuk Kwon and Michael C. Ostrowski of The Ohio State University; and Zhengtao Chu, Lionel M.L. Chow, Mary Palascak, Robert Franco, Tristan Bourdeau, Sherry Thornton and Xiaoyang Qi of the University of Cincinnati.

####

About Ohio State University Medical Center
The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only four centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 228-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top cancer hospitals in the nation as ranked by U.S.News & World Report.

For more information, please click here

Contacts:
Darrell E. Ward
Wexner Medical Center
Public Affairs and Media Relations

614-293-3737

Copyright © Ohio State University Medical Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Nanomedicine

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Discoveries

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Research partnerships

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE