Nanotechnology Now

Heifer International

Wikipedia Affiliate Button


Home > Press > Boosting Immune Therapy for Cancer with Nanoparticles

Activating the body's immune system to attack cancer and prevent it from recurring is one of the Holy Grails of cancer research because of its ability to specifically target cancer and to search almost anywhere in the body for rogue tumors. While the field has made some progress, and immune therapy for malignant melanoma and prostate cancer is proving its value in the treatment of human disease, it appears that no one general approach is going to work in all types of cancer. Two recent papers show how nanoparticles could become important tools for stimulating the immune system to respond to cancer.

Boosting Immune Therapy for Cancer with Nanoparticles

Bethesda, MD | Posted on July 15th, 2013

Work from Rebekah Drezek's group at the Baylor College of Medicine, for example, is demonstrating that gold nanoparticles can efficiently deliver large amounts of immune system-stimulating nucleic acids into macrophages, activating scavenger cells and enabling them to attack tumors in animals. This work was reported in the journal PLoS ONE.

The BCM team has been working with short pieces of synthetic nucleic acids containing repeated segments of cytosine-phosphate-guanine (CpG) that are known to reduce the immune suppressing activity of tumors. To be effective, however, these molecules have to be administered at high doses, raising toxicity concerns. Dr. Drezek reasoned, though, that since nanoparticles are naturally taken up by macrophages and other immune stimulating cells known as dendritic cells, they might prove useful as targeted delivery agents that could enhance the immune response associated with CpG nucleic acids without the associated side effects.

Experiments in mice appear to show just that. When administered to tumor-bearing mice, gold nanoparticles coated with a layer of CpG nucleic acids produced a marked immune response that inhibited tumor growth and increased survival of the treated animals. The researchers showed that nanoparticle-CpG treatment boosted immune cell movement into tumors without producing elevated levels of powerful signaling molecules known as cytokines that can cause unwanted toxicities. Based on these results, Dr. Drezek's group plans to explore if this approach can work synergistically with other types of therapy and in models of metastatic disease.

Researchers at the Sanford Burnham Medical Research Institute are taking a different approach, using modified carbon nanotubes as delivery vehicles of agents that will turn off cells known as T-regulatory (T-reg) cells. When present, these cells suppress the immune system. By targeting T-reg cells found specifically in tumors, Massimo Bottini and his colleagues hope to boost the effect of a wide range of cancer immunotherapies, including the type that Dr. Drezek's group is developing. Dr. Bottinis group published the results of their studies in the journal Bioconjugate Chemistry.

This recent work has highlighted the importance of T-reg cells found in tumors in suppressing the immune systems ability to destroy tumors. It has also been shown that these tumor associated cells overexpress a molecule known as the glucocorticoid-induced TNFR-related receptor (GITR) where T-reg cells found in the rest of the body do not. In an important first step, Dr. Bottini and his collaborators showed that attaching a GITR-targeting molecule to carbon nanotubes triggers a dramatic increase in uptake of this construct by T-reg cells within tumors, but not by those in other parts of the body. The researchers note that this achievement represents the first selective intratumor targeting of T-reg cells. "We hope it will pave the way to novel oncologic immunotherapies based on T-reg-selective functional manipulation," wrote the investigators.


About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View open access full paper - “Gold nanoparticle delivery of modified CpG stimulates macrophages and inhibits tumor growth for enhanced immunotherapy.”

View abstract - “In vivo targeting of intratumor regulatory T cell using PEG-modified single-walled carbon nanotubes.”

View paper:

Related News Press

News and information

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015


New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015


Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015


Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project