Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers build an all-optical transistor: An optical switch that can be turned on by a single photon could point toward new designs for both classical and quantum computers

Graphic: Christine Daniloff/MIT
Graphic: Christine Daniloff/MIT

Abstract:
Optical computing — using light rather than electricity to perform calculations — could pay dividends for both conventional computers and quantum computers, largely hypothetical devices that could perform some types of computations exponentially faster than classical computers.

Researchers build an all-optical transistor: An optical switch that can be turned on by a single photon could point toward new designs for both classical and quantum computers

Cambridge, MA | Posted on July 5th, 2013

But optical computing requires light particles — photons — to modify each other's behavior, something they're naturally averse to doing: Two photons that collide in a vacuum simply pass through each other.

In the latest issue of the journal Science, researchers at MIT's Research Laboratory of Electronics — together with colleagues at Harvard University and the Vienna University of Technology — describe the experimental realization of an optical switch that's controlled by a single photon, allowing light to govern the transmission of light. As such, it's the optical analog of a transistor, the fundamental component of a computing circuit.

Moreover, since the weird, counterintuitive effects of quantum physics are easier to see in individual particles than in clusters of particles, the ability to use a single photon to flip the switch could make it useful for quantum computing.

The heart of the switch is a pair of highly reflective mirrors. When the switch is on, an optical signal — a beam of light — can pass through both mirrors. When the switch is off, only about 20 percent of the light in the signal can get through.

The paired mirrors constitute what's known as an optical resonator. "If you had just one mirror, all the light would come back," explains Vladan Vuletić, the Lester Wolfe Professor of Physics at MIT, who led the new work. "When you have two mirrors, something very strange happens."

Light can be thought of as particles — photons — but it can also be thought of as a wave — an electromagnetic field. Even though, on the particle description, photons are stopped by the first mirror, on the wave description, the electromagnetic field laps into the space between the mirrors. If the distance between the mirrors is precisely calibrated to the wavelength of the light, Vuletić explains, "Basically, a very large field builds up inside the cavity that cancels the field coming back and goes in the forward direction." In other words, the mirrors become transparent to light of the right wavelength.

Clouding over

In the RLE researchers' experiment, the cavity between the mirrors is filled with a gas of supercooled cesium atoms. Ordinarily, these atoms don't interfere with the light passing through the mirrors. But if a single "gate photon" is fired into their midst at a different angle, kicking just one electron of one atom into a higher energy state, it changes the physics of the cavity enough that light can no longer pass through it.

Joining Vuletić on the paper are lead author Wenlan Chen and Kristin M. Beck, both PhD students in his group; Robert Bücker of the Vienna University of Technology; and Michael Gullans, Mikhail D. Lukin and Haruka Tanji-Suzuki of Harvard.

For conventional computers, the chief advantage of optical computing would be in power management: As computer chips have more and more transistors crammed onto them, they draw more power and run hotter. Computing with light instead of electricity would address both problems.

Of course, clouds of supercooled atoms are not a practical design for the transistors in, say, a Web server. "For the classical implementation, this is more of a proof-of-principle experiment showing how it could be done," Vuletić says. "One could imagine implementing a similar device in solid state — for example, using impurity atoms inside an optical fiber or piece of solid."

Going quantum

Quantum-computing applications may be more compelling. Bizarrely, tiny particles of matter can be in mutually exclusive states simultaneously, something known as superposition. Where a bit in a classical computer can be either on or off, representing 0 or 1, bits built from particles in superposition can represent 0 and 1 at the same time. As a consequence, they could, in principle, evaluate many possible solutions to a computational problem in parallel, rather than considering them one by one.

Primitive quantum computers have been built using laser-trapped ions and nuclear magnetic resonance, but it's hard to keep their bits — or "qubits," for quantum bits — in superposition. Superposition is much easier to preserve in photons, for exactly the same reason that it's hard to get photons to interact.

The ability to switch an optical gate with a single photon opens the possibility of arrays of optical circuits, all of which are in superposition. "If the gate photon is there, the light gets reflected; if the gate photon is not there, the light gets transmitted," Vuletić explains. "So if you were to put in a superposition state of the photon being there and not being there, then you would end up with a macroscopic superposition state of the light being transmitted and reflected."

A photon-switched transistor has other implications for quantum computing. For instance, Vuletić says, one of the first applications of a conventional transistor was to filter noise out of an electrical signal by feeding the transistor's output back into it. "Quantum feedback can cancel — to the extent allowed by quantum mechanics — quantum noise," Vuletić says. "You can make quantum states that you wouldn't otherwise get."

The switch could also be used as a photon detector: If a photon has struck the atoms, light won't pass through the cavity. "That means you have a device that can detect a photon without destroying it," Vuletić says. "That doesn't exist today. It would have many applications in quantum information processing."

"Energy consumption in computing devices is a big issue," says Jelena Vuckovic, a professor of electrical engineering at Stanford University. "The beauty of this approach is that it can really do switching at the single-photon level, so your losses are much smaller. You don't have to spend a lot of energy for each bit. Your bit is essentially included in a single photon."

Vuckovic believes that it should be possible to reproduce the MIT researchers' results in physical systems that are easier to integrate into computer chips. "It's exactly the same story, except that instead of using these ultracold atoms in the cavity, you use a microscopic cavity on a semiconductor chip on a semiconductor and you use a quantum dot grown inside of the semiconductor as an artificial atom," she says. "There would be extra steps that people would have to take in order to implement the right energy-level structure. But in principle, the physics could be translated to a platform that could be cascaded and more easily integrated."

####

For more information, please click here

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

News and information

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Possible Futures

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Chip Technology

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Quantum Computing

Harris & Harris Group Issues Its Financial Statements as of December 31, 2016, Posts Its Annual Shareholder Letter, And Will Host a Conference Call for Shareholders on Friday, March 17, 2017 March 15th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

First ever blueprint unveiled to construct a large scale quantum computer February 3rd, 2017

Chiral quantum optics: A new research field with bright perspectives January 31st, 2017

Optical computing/Photonic computing

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

New research could trigger revolution in computer electronics manufacturing March 3rd, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Discoveries

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Announcements

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Photonics/Optics/Lasers

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

MIPT physicists predict the existence of unusual optical composites March 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project