Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > USF study links cardiac hormone-related inflammatory pathway with tumor growth

Subhra Mohapatra, PhD
Subhra Mohapatra, PhD

Abstract:
A cardiac hormone signaling receptor abundantly expressed both in inflamed tissues and cancers appears to recruit stem cells that form the blood vessels needed to feed tumor growth, reports a new study by scientists at the University of South Florida Nanomedicine Research Center.

USF study links cardiac hormone-related inflammatory pathway with tumor growth

Tampa, FL | Posted on June 29th, 2013

The research may lead to the development of new drugs or delivery systems to treat cancer by blocking this receptor, known as natriuretic peptide receptor A (NPRA).

The findings appeared online recently in the journal Stem Cells.

"Our results show that NRPA signaling by cancer cells produces some molecular factors that attract stem cells, which in turn form blood vessels that provide oxygen and nutrients to the tumor," said the study's principal investigator Subhra Mohapatra, PhD, associate professor in the Department of Molecular Medicine. "We showed that if the NPRA signal is blocked, so is the angiogenesis and, if the tumor's blood supply is cut off it will die."

Using both cultured cells and a mouse model, Dr. Mohapatra and her team modeled interactions to study the association between gene mutations and exposure to an inflammatory tissue microenvironment.

The researchers demonstrated that cardiac hormone NRPA played a key role in the link between inflammation and the development of cancer-causing tumors. Mice lacking NPRA signaling failed to induce tumors. However, co-implanting tumor cells with mesenchymal stem cells, which can turn into cells lining the inner walls of blood vessels, promoted the sprouting of blood vessels (angiogenesis) needed to promote tumor growth in NPRA- deficient mice, the researchers found. Furthermore, they showed that NRPA signaling appears to regulate key inflammatory cytokines involved in attracting these stem cells to tumor cells.

Dr. Mohapatra's laboratory is testing an innovative drug delivery system using special nanoparticles to specifically target cancers cells like a guided missile, while sparing healthy cells. The treatment is intended to deliver a package of molecules that interferes with the cardiac hormone receptor's ability to signal.

Dr. Mohapatra collaborated with Shyam Mohapatra, PhD, and Srinivas Nagaraj, PhD, both faculty members in the Nanomedicine Research Center and Department of Internal Medicine, on genetic and immunological aspects of the study.

The study was supported by the National Institutes of Health and a Florida Biomedical Research Grant.

####

About University of South Florida (USF Health)
USF Health’s mission is to envision and implement the future of health. It is the partnership of the USF Health Morsani College of Medicine, the College of Nursing, the College of Public Health, the College of Pharmacy, the School of Biomedical Sciences and the School of Physical Therapy and Rehabilitation Sciences; and the USF Physician’s Group. The University of South Florida is a global research university ranked 50th in the nation by the National Science Foundation for both federal and total research expenditures among all U.S. universities. For more information, visit www.health.usf.edu

For more information, please click here

Contacts:
Anne DeLotto Baier

813-974-3303

Copyright © University of South Florida (USF Health)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Nanomedicine

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Discoveries

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Announcements

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic