Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > SEMATECH Advances Device Processing Techniques to Enable III-V Manufacturing: Results show significant progress in developing a low-cost process technology to deposit III-Vs on top of silicon

Abstract:
SEMATECH announced today that researchers have made significant advances in post-epitaxial growth backside clean processing that will prepare III-V technology for high-volume manufacturing. The research leading to these accomplishments was conducted at SEMATECH's facilities at the College of Nanoscale Science and Engineering (CNSE) in Albany, NY.

SEMATECH Advances Device Processing Techniques to Enable III-V Manufacturing: Results show significant progress in developing a low-cost process technology to deposit III-Vs on top of silicon

Albany, NY | Posted on June 27th, 2013

Following a two-year effort to improve process parameters and validating III-V on 200 mm Si VLSI process flows, technologists have identified the key mechanisms to enable a robust backside cleaning process and made significant progress in reducing the likelihood of process cross-contamination that could impact a high-volume manufacturing line. This important milestone was presented during SEMATECH's Surface Preparation and Cleaning Conference held recently in Austin, Texas.

Furthermore, SEMATECH has developed systematic experiments to identify the key mechanisms of backside contamination, which were then used to engineer robust backside clean process using standard high-volume manufacturing toolsets. At the same time, researchers assessed the environmental, safety and health (ESH) risks of applying and processing compound semiconductor films on silicon dioxide wafers.

"In order to drive cost-effective compliance solutions, SEMATECH is developing new testing and analysis methodologies to evaluate ESH impacts of novel materials," said Hsi-An Kwong, SEMATECH's ESH Technology Center program manager. "After conducting a process analysis of III-V manufacturing line, we were able to identify potential ESH risks, including generation of arsine and arsenic compounds, and develop protocols to help mitigate the impact to environment and safety."

Supported by the conventional Si CMOS processing capabilities of CNSE, SEMATECH researchers are now working jointly with chipmakers, equipment and materials suppliers and universities on the ESH and contamination challenges of processing III-V materials in a 300 mm fab in order to enable safe implementation of III-V technology for high-volume manufacturing.

III-V compound semiconductors are considered valid candidates as building blocks for the implementation of high-performance, low-power logic devices beyond the 10 nm technology node. To be truly competitive, III-V based technology must be monolithically integrated with Si in order to benefit from the existing Si-based semiconductor processing. For successful introduction into a Si manufacturing line, hetero-integrated III-V on Si wafers must be processed with a backside clean and capping processes.

"Through the success of our research and development efforts, SEMATECH is developing manufacturable solutions and practical implementation approaches to enable the fabrication of logic devices and systems on chips with diverse and improved functionalities," said Paul Kirsch, director of Front End Processes (FEP) at SEMATECH.

For over half a century, silicon-based materials have been the basic layers used in the manufacturing of CMOS transistors; however, these staple materials, as well as materials derived from silicon such as insulators and contact metals, are reaching their limits as the industry looks to lower power dissipation in CMOS devices and as scaling approaches the physical limits of silicon transistors. SEMATECH's FEP program is exploring innovative materials, new transistor structures and alternative non-volatile memories to address key aspects of system-level performance, power, variability and cost to help accelerate innovation in the continued scaling of logic and memory applications.

"The backside clean step is a key component of successful introduction of III-V material to a 300 mm high-volume manufacturing line," said Chris Hobbs, SEMATECH's FEP program manager. "Success at this step is critical to ensure contamination control through subsequent toolsets."

####

About SEMATECH
For over 25 years, SEMATECH®, the international consortium of leading semiconductor device, equipment, and materials manufacturers, has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Through our unwavering commitment to foster collaboration across the nanoelectronics industry, we help our members and partners address critical industry transitions, drive technical consensus, pull research into the industry mainstream, improve manufacturing productivity, and reduce risk and time to market. Information about SEMATECH can be found at www.sematech.org. Twitter: www.twitter.com/sematech

For more information, please click here

Contacts:
Erica McGill
SEMATECH
Marketing Communications
O: 518-649-1041

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Chip Technology

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Nanometrics to Announce First Quarter Financial Results on May 2, 2017 April 11th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Photonics breakthough paving the way for improved wireless communication systems: The work could bolster the wireless revolution underway with efficiencies several orders of magnitude April 5th, 2017

Announcements

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Events/Classes

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Alliances/Trade associations/Partnerships/Distributorships

BASF and Landa partner to create revolutionary pigments for automotive coatings: The alliance combines BASF innovations with Landa nano-pigment technology April 5th, 2017

Leti Announces EU/South Korean Project for World’s First 5G-system Prototype: Coinciding with the 2018 Winter Games in PyeongChang, Korea, Prototype Will Be First Time State-of-the-art Terrestrial Wireless Communication Is Seamlessly Combined with Disruptive Satellite Communicati April 4th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Research partnerships

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project