Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Leti Developing Miniaturized Sensors for Artificial Kidney that Provides Improved Dialysis, Convenience for Patients: Portable Renal-Care System Fits in Carrier that Is Worn on Patient’s Side

Left, the electrochemical platform without the fluidic part; middle, the complete electrochemical platform and the electronic board; right, the artificial kidney developed by the consortium.
Left, the electrochemical platform without the fluidic part; middle, the complete electrochemical platform and the electronic board; right, the artificial kidney developed by the consortium.

Abstract:
CEA-Leti and nine partners in the NEPHRON+ project are developing an artificial kidney that would provide a major improvement in treating patients with chronic kidney failure.

Leti Developing Miniaturized Sensors for Artificial Kidney that Provides Improved Dialysis, Convenience for Patients: Portable Renal-Care System Fits in Carrier that Is Worn on Patient’s Side

Grenoble, France | Posted on June 25th, 2013

The goal is a next-generation, integrated system that allows real-time, continuous, multiparametric monitoring of the patient and the device via sensors developed by Leti and its partners. The continuous data collection will allow early detection of device anomalies and a trend analysis on the health status of the patient, which would be used to improve treatment.

The renal-care system, contained in a rectangular holder that is worn on the patient's side, offers improved blood filtering and allows patients to avoid required periodic dialysis treatments.

"NEPHRON+ presents an ideal system for dialysis outside a hospital or clinic because it improves blood clearance and provides ongoing monitoring of the device and patients, who would gain a level of freedom and convenience they don't have today," said Gilles Marchand, head of Leti's materials and interfaces chemistry laboratory "This system is another primary example of Leti's continuing innovation in sensors and our commitment to turning technological advances into real products."

Leti's contribution also will include the design, development and the integration of the electrochemical platform in the artificial kidney.

Leti focused on miniaturizing the sensors to embed them in the device, as well as improving the electronic board that converts the sensor electrical signals in a ready-to-use concentration. To achieve this, researchers developed an electrochemical platform including five biocompatible ionic selective electrodes (ISE) able to monitor ion concentrations, as well as a reference electrode, a temperature sensor and an EPROM to store parameters (calibration curves).

Leti's partners in the project are Exodus S.A. (coordinator), CSEM, TNO, Nierstichting Nederland, IMST GmbH, Nanodialysis BV, Danube University Krems, University Medical Center Ultecht and OFFIS EV.

####

About CEA-Leti
Leti is an institute of CEA, a French research-and-technology organization with activities in energy, IT, healthcare, defence and security. Leti is focused on creating value and innovation through technology transfer to its industrial partners. It specializes in nanotechnologies and their applications, from wireless devices and systems, to biology, healthcare and photonics. NEMS and MEMS are at the core of its activities. An anchor of the MINATEC campus, CEA-Leti operates 8,000-m² of state-of-the-art clean room space on 200mm and 300mm wafer platforms. It employs 1,700 scientists and engineers including 320 Ph.D. students and 200 assignees from partner companies. CEA-Leti owns more than 2,200 patent families.

For more information, please click here

Contacts:
CEA-Leti
+33 4 38 78 02 26


Agency
+33 6 64 52 81 10

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project