Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Leti Developing Miniaturized Sensors for Artificial Kidney that Provides Improved Dialysis, Convenience for Patients: Portable Renal-Care System Fits in Carrier that Is Worn on Patient’s Side

Left, the electrochemical platform without the fluidic part; middle, the complete electrochemical platform and the electronic board; right, the artificial kidney developed by the consortium.
Left, the electrochemical platform without the fluidic part; middle, the complete electrochemical platform and the electronic board; right, the artificial kidney developed by the consortium.

Abstract:
CEA-Leti and nine partners in the NEPHRON+ project are developing an artificial kidney that would provide a major improvement in treating patients with chronic kidney failure.

Leti Developing Miniaturized Sensors for Artificial Kidney that Provides Improved Dialysis, Convenience for Patients: Portable Renal-Care System Fits in Carrier that Is Worn on Patient’s Side

Grenoble, France | Posted on June 25th, 2013

The goal is a next-generation, integrated system that allows real-time, continuous, multiparametric monitoring of the patient and the device via sensors developed by Leti and its partners. The continuous data collection will allow early detection of device anomalies and a trend analysis on the health status of the patient, which would be used to improve treatment.

The renal-care system, contained in a rectangular holder that is worn on the patient's side, offers improved blood filtering and allows patients to avoid required periodic dialysis treatments.

"NEPHRON+ presents an ideal system for dialysis outside a hospital or clinic because it improves blood clearance and provides ongoing monitoring of the device and patients, who would gain a level of freedom and convenience they don't have today," said Gilles Marchand, head of Leti's materials and interfaces chemistry laboratory "This system is another primary example of Leti's continuing innovation in sensors and our commitment to turning technological advances into real products."

Leti's contribution also will include the design, development and the integration of the electrochemical platform in the artificial kidney.

Leti focused on miniaturizing the sensors to embed them in the device, as well as improving the electronic board that converts the sensor electrical signals in a ready-to-use concentration. To achieve this, researchers developed an electrochemical platform including five biocompatible ionic selective electrodes (ISE) able to monitor ion concentrations, as well as a reference electrode, a temperature sensor and an EPROM to store parameters (calibration curves).

Leti's partners in the project are Exodus S.A. (coordinator), CSEM, TNO, Nierstichting Nederland, IMST GmbH, Nanodialysis BV, Danube University Krems, University Medical Center Ultecht and OFFIS EV.

####

About CEA-Leti
Leti is an institute of CEA, a French research-and-technology organization with activities in energy, IT, healthcare, defence and security. Leti is focused on creating value and innovation through technology transfer to its industrial partners. It specializes in nanotechnologies and their applications, from wireless devices and systems, to biology, healthcare and photonics. NEMS and MEMS are at the core of its activities. An anchor of the MINATEC campus, CEA-Leti operates 8,000-m² of state-of-the-art clean room space on 200mm and 300mm wafer platforms. It employs 1,700 scientists and engineers including 320 Ph.D. students and 200 assignees from partner companies. CEA-Leti owns more than 2,200 patent families.

For more information, please click here

Contacts:
CEA-Leti
+33 4 38 78 02 26


Agency
+33 6 64 52 81 10

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Sensors

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology January 25th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic