Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Polymer structures serve as 'nanoreactors' for nanocrystals with uniform sizes, shapes: Tiny chemistry

Georgia Tech professor Zhiqun Lin examines a gold nanoparticle toluene solution. The work is part of research on using star-shaped block co-polymers to create nanocrystals of uniform size and shape.

Credit: Georgia Tech Photo: Gary Meek
Georgia Tech professor Zhiqun Lin examines a gold nanoparticle toluene solution. The work is part of research on using star-shaped block co-polymers to create nanocrystals of uniform size and shape.

Credit: Georgia Tech Photo: Gary Meek

Abstract:
Using star-shaped block co-polymer structures as tiny reaction vessels, researchers have developed an improved technique for producing nanocrystals with consistent sizes, compositions and architectures - including metallic, ferroelectric, magnetic, semiconductor and luminescent nanocrystals. The technique relies on the length of polymer molecules and the ratio of two solvents to control the size and uniformity of colloidal nanocrystals.

Polymer structures serve as 'nanoreactors' for nanocrystals with uniform sizes, shapes: Tiny chemistry

Atlanta, GA | Posted on June 11th, 2013

The technique could facilitate the use of nanoparticles for optical, electrical, optoelectronic, magnetic, catalysis and other applications in which tight control over size and structure is essential to obtaining desirable properties. The technique produces plain, core-shell and hollow nanoparticles that can be made soluble either in water or in organic solvents.

"We have developed a general strategy for making a large variety of nanoparticles in different size ranges, compositions and architectures," said Zhiqun Lin, an associate professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. "This very robust technique allows us to craft a wide range of nanoparticles that cannot be easily produced with any other approaches."

The technique was described in the June issue of the journal Nature Nanotechnology. The research was supported by the Air Force Office of Scientific Research.

The star-shaped block co-polymer structures consist of a central beta-cyclodextrin core to which multiple "arms" - as many as 21 linear block co-polymers - are covalently bonded. The star-shaped block co-polymers form the unimolecular micelles that serve as a reaction vessel and template for the formation of the nanocrystals.

The inner blocks of unimolecular micelles are poly(acrylic) acid (PAA), which is hydrophilic, which allows metal ions to enter them. Once inside the tiny reaction vessels made of PAA, the ions react with the PAA to form nanocrystals, which range in size from a few nanometers up to a few tens of nanometers. The size of the nanoparticles is determined by the length of the PAA chain.

The block co-polymer structures can be made with hydrophilic inner blocks and hydrophobic outer blocks - amphiphilic block co-polymers, with which the resulting nanoparticles can be dissolved in organic solvents. However, if both inner and outer blocks are hydrophilic - all hydrophilic block co-polymers - the resulting nanoparticles will be water-soluble, making them suitable for biomedical applications.

Lin and collaborators Xinchang Pang, Lei Zhao, Wei Han and Xukai Xin found that they could control the uniformity of the nanoparticles by varying the volume ratio of two solvents - dimethlformamide and benzyl alcohol - in which the nanoparticles are formed. For ferroelectric lead titanate (PbTiO3) nanoparticles, for instance, a 9-to-1 solvent ratio produces the most uniform nanoparticles.

The researchers have also made iron oxide, zinc oxide, titanium oxide, cuprous oxide, cadmium selenide, barium titanate, gold, platinum and silver nanocrystals. The technique could be applicable to nearly all transition or main-group metal ions and organometallic ions, Lin said.

"The crystallinity of the nanoparticles we are able to create is the key to a lot of applications," he added. "We need to make them with good crystalline structures so they will exhibit good physical properties."

Earlier techniques for producing polymeric micelles with linear block co-polymers have been limited by the stability of the structures and by the consistency of the nanocrystals they produce, Lin said. Current fabrication techniques include organic solution-phase synthesis, thermolysis of organometallic precursors, sol-gel processes, hydrothermal reactions and biomimetic or dendrimer templating. These existing techniques often require stringent conditions, are difficult to generalize, include a complex series of steps, and can't withstand changes in the environment around them.

By contrast, nanoparticle production technique developed by the Georgia Tech researchers is general and robust. The nanoparticles remain stable and homogeneous for long periods of time - as much as two years so far - with no precipitation. Such flexibility and stability could allow a range of practical applications, Lin said.

"Our star-like block co-polymers can overcome the thermodynamic instabilities of conventional linear block co-polymers," he said. "The chain length of the inner PAA blocks dictates the size of the nanoparticles, and the uniformity of the nanoparticles is influenced by the solvents used in the system."

The researchers have used a variety of star-like di-block and tri-block co-polymers as nanoreactors. Among them are poly(acrylic acid)-block-polystyrene (PAA-b-PS) and poly(acrylic acid)-blockpoly(ethylene oxide) (PAA-b-PEO) diblock co-polymers, and poly(4-vinylpyridine)-block-poly(tert-butyl acrylate)-block-polystyrene (P4VP-b-PtBA-b-PS), poly(4-vinylpyridine)-block-poly (tert-butyl acrylate)-block-poly(ethylene oxide) (P4VP-b-PtBA-b-PEO), polystyrene-block-poly(acrylic acid)-block-polystyrene (PS-b-PAA-b-PS) and polystyrene-block-poly(acrylic acid)-block-poly(ethylene oxide) (PS-b-PAA-b-PEO) tri-block co-polymers.

For the future, Lin envisions more complex nanocrystals with multifunctional shells and additional shapes, including nanorods and so-called "Janus" nanoparticles that are composed of biphasic geometry of two dissimilar materials.

This research was supported by the Air Force Office of Scientific Research (AFOSR) under awards FA9550-09-1-0388 and FA9550-13-1-0101. The conclusions expressed in this news releases are those of the principal investigator and do not necessarily represent the official views of the AFOSR.

####

For more information, please click here

Contacts:
John Toon

404-894-6986

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

CITATION: Xinchang Pang, Lei Zhao, Wei Han, Xukai Xin and Zhiqun Lin, "A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals," (Nature Nanotechnology, 8, 426, 2013):

Related News Press

News and information

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Chemistry

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Discoveries

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Announcements

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Military

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Teri Odom and Richard Van Duyne Honored by Department of Defense: Each will receive $3 million over five years to conduct high-risk, high-payoff research March 31st, 2017

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Photonics/Optics/Lasers

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Method improves semiconductor fiber optics, paves way for developing devices April 16th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Photonics breakthough paving the way for improved wireless communication systems: The work could bolster the wireless revolution underway with efficiencies several orders of magnitude April 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project