Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 'Long-awaited explanation' for mysterious effects in high-temperature superconductors: 2 orders for electrons

At each copper atom (grey balls) there is a quadrupole moment. All together, these form a kind of chessboard pattern, whereby the individual squares of the chessboard differ in the orientation of the positively and negatively charged areas (green: positive areas left and right; grey: positive areas top and bottom). At the boundaries between green and grey surfaces, the signs change. Copper atoms close to the boundary have a smaller quadrupole moment than copper atoms in the middle of the areas.

© Konstantin Efetov und Hendrik Meier (Institut für Theoretische Physik III)
At each copper atom (grey balls) there is a quadrupole moment. All together, these form a kind of chessboard pattern, whereby the individual squares of the chessboard differ in the orientation of the positively and negatively charged areas (green: positive areas left and right; grey: positive areas top and bottom). At the boundaries between green and grey surfaces, the signs change. Copper atoms close to the boundary have a smaller quadrupole moment than copper atoms in the middle of the areas.

© Konstantin Efetov und Hendrik Meier (Institut für Theoretische Physik III)

Abstract:
A German-French research team has constructed a new model that explains how the so-called pseudogap state forms in high-temperature superconductors. The calculations predict two coexisting electron orders. Below a certain temperature, superconductors lose their electrical resistance and can conduct electricity without loss. "It is not to be excluded that the new pseudogap theory also provides the long-awaited explanation for why, in contrast to conventional metallic superconductors, certain ceramic copper oxide bonds lose their electrical resistance at such unusually high temperatures", say Prof. Dr. Konstantin Efetov and Dr. Hendrik Meier of the Chair of Theoretical Solid State Physics at the Ruhr-Universität Bochum. They obtained the findings in close cooperation with Dr. Catherine Pépin from the Institute for Theoretical Physics in Saclay near Paris. The team reports in the journal Nature Physics.

'Long-awaited explanation' for mysterious effects in high-temperature superconductors: 2 orders for electrons

Bochum, Germany | Posted on June 8th, 2013

Transition temperature much higher in ceramic than in metallic superconductors

Superconductivity only occurs at very low temperatures below the so-called transition temperature. In metallic superconductors, this is close to the absolute zero point of 0 Kelvin, which corresponds to about -273 degrees Celsius. However, crystalline ceramic materials can be superconductive at temperatures up to 138 Kelvin. For 25 years, researchers puzzled over the physical bases of this high-temperature superconductivity.

Pseudogap: energy gap above the transition temperature

In the superconducting state, electrons travel in so-called Cooper pairs through the crystal lattice of a material. In order to break up a Cooper pair so that two free electrons are created, a certain amount of energy is needed. This difference in the energy of the Cooper electrons and the so-called free electrons is called an energy gap. In cuprate superconductors, compounds based on copper oxide bonds, a similar energy gap also occurs under certain circumstances above the transition temperature - the pseudogap. Characteristically the pseudogap is only perceived by electrons with certain velocity directions. The model constructed by the German-French team now allows new insights into the physical inside of the pseudogap state.

Two competing electron orders in the pseudogap state

According to the model, the pseudogap state simultaneously contains two electron orders: d-wave superconductivity, in which the electrons of a Cooper pair revolve around each other in a cloverleaf shape, and a quadrupole density wave. The latter is a special electrostatic structure in which every copper atom in the two-dimensional crystal lattice has a quadrupole moment, i.e. two opposite regions of negative charge, and two opposite regions of positive charge. d-wave superconductivity and quadrupole density wave compete with each other in the pseudogap state. Due to thermal fluctuations, neither of the two systems can assert itself. However, if the system is cooled down, the thermal fluctuations become weaker and one of the two systems prevails: superconductivity. The critical temperature at which this occurs can, in the model, be considerably higher than the transition temperature of conventional metallic superconductors. The model could thus explain why the transition temperature in the ceramic superconductors is so much higher.

Cuprates

High-temperature copper oxide superconductors are also called cuprates. In addition to copper and oxygen, they can, for example, contain the elements yttrium and barium (YBa2Cu3O7). To make the material superconducting, researchers introduce "positive holes", i.e. electron holes into the crystal lattice. Through these, the electrons can "flow" in Cooper pairs. This is known as hole doping. The pseudogap state only sets in when the hole doping of the cuprate is neither too low nor too high.

Bibliographic record

K.B. Efetov, H. Meier, C. Pépin (2013): Pseudogap state near a quantum critical point, Nature Physics, DOI: 10.1038/NPHYS2641

####

For more information, please click here

Contacts:
Konstantin Efetov

49-234-322-4844

Dr. Hendrik Meier, Chair of Theoretical Solid State Physics, Institute of Physics III at the Ruhr-Universität, 44780 Bochum, Germany,
Tel. +49/234/32-23744

Copyright © Ruhr-University Bochum

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Physics

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Superconductivity

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Unraveling the origin of the pseudogap in a charge density wave compound April 8th, 2015

Frustrated magnets -- new experiment reveals clues to their discontent April 4th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Discoveries

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Announcements

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project