Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Hair sensor uncovers hidden signals

Tiny “hairs” of the polymer SU-8 are applied to a flexible, moving surface, the capacitance of which changes with each movement.
Tiny “hairs” of the polymer SU-8 are applied to a flexible, moving surface, the capacitance of which changes with each movement.

Abstract:
An "artificial cricket hair" used as a sensitive flow sensor has difficulty detecting weak, low-frequency signals - they tend to be drowned out by noise. But now, a bit of clever tinkering with the flexibility of the tiny hair's supports has made it possible to boost the signal-to-noise ratio by a factor of 25. This in turn means that weak flows can now be measured. Researchers at the MESA+ Institute for Nanotechnology of the University of Twente (NL) have presented details of this technology in the New Journal of Physics.

Hair sensor uncovers hidden signals

Enschede, Netherlands | Posted on June 7th, 2013

These tiny hairs, which are manufactured using microtechnology techniques, are neatly arranged in rows and mimic the extremely sensitive body hairs that crickets use to detect predators. When a hair moves, the electrical capacitance at its base changes, making the movement measurable. If there is an entire array of hairs, then this effect can be used to measure flow patterns. In the same way, changes in air flow tell crickets that they are about to be attacked.

Mechanical AM radio

In the case of low-frequency signals, the noise inherent to the measurement system itself tends to throw a spanner in the works by drowning out the very signals that the system was designed to measure. One very appealing idea is to "move" these signals into the high frequency range, where noise is a much less significant factor. The MESA+ researchers achieve this by periodically changing the hairs' spring rate. They do so by applying an electrical voltage.

This adjustment also causes the hairs to vibrate at a high frequency. This resembles the technology used in old AM radios, where the music signal is encoded on a higher frequency wave. In the case of the sensor, its "radio" is a mechanical device. Low frequency flows are measured by tiny hairs vibrating at a higher frequency. The signal can then be retrieved, with significantly less noise. Suddenly, a previously unmeasurable signal emerges, thanks to this "up-conversion".

This electromechanical amplitude modulation (EMAM) expands the hair sensors' range of applications enormously. Now that the signal-to-noise ratio has been improved by a factor of 25, it is possible to measure much weaker signals.
According to the researchers, this technology could be a very useful way of boosting the performance of many other types of sensors.

The study was conducted by the Transducers Science and Technology group, which is part of the MESA+ Institute for Nanotechnology at the University of Twente. It is being carried out in the context of BioEARS (Prof. Gijs Krijnen's VICI project), with funding from the STW Technology Foundation in The Netherlands.

####

For more information, please click here

Contacts:
Wiebe van der Veen
+31612185692

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

New Journal of Physics Volume 15 May 2013

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Sensors

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Measuring the nanoworld September 4th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project