Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Spooky action put to order Different types of 'entanglement' classified

Researchers at ETH Zurich have developed a method of assigning classes of complex quantum states to geometric objects known as polytopes.Image: Amanda Eisenhut / ETH Zurich
Researchers at ETH Zurich have developed a method of assigning classes of complex quantum states to geometric objects known as polytopes.

Image: Amanda Eisenhut / ETH Zurich

Abstract:
"I think I can safely say that nobody understands quantum mechanics." Thus spoke the American physicist Richard Feynman underlining that even leading scientists struggle to develop an intuitive feeling for quantum mechanics. One reason for this is that quantum phenomena often have no counterpart in classical physics. A typical example is the quantum entanglement: Entangled particles seem to directly influence one another, no matter how widely separated they are. It looks as if the particles can 'communicate' with one another across arbitrary distances. Albert Einstein, famously, called this seemingly paradoxical behaviour "spooky action at a distance."

Spooky action put to order Different types of 'entanglement' classified

Zurich, Switzerland | Posted on June 6th, 2013

When more than two particles are entangled, the mutual influence between them can come in different forms. These different manifestations of the entanglement phenomenon are not fully understood, and so far there exists no general method to systematically group entangled states into categories. Reporting in the journal Science, a group of mathematicians and physicists around Matthias Christandl, professor at the Institute for Theoretical Physics, provides an important contribution towards putting the "spooky action" to order. The team has developed a method that allows them to assigning a given quantum state to a class of possible entanglement states. Such a method is important because, among other things, it helps to predict how potentially useful the quantum state can be in technological applications.

Putting entangled states in their place

Together with Brent Doran, a professor in the Department for Mathematics at ETH Zurich, and David Gross, a professor at the University of Freiburg in Germany, Christandl and his PhD student Michael Walter, first author of the Science publication, introduce a method in which different classes of entangled states are associated with geometric objects known as polytopes. These objects represent the "space" that is available to the states of a particular entanglement class. Whether or not a given state belongs to a specific polytope can be determined by making a number of measurements on the individual particles. Importantly, there is no need to measure several particles simultaneously, as is necessary in other methods. The possibility to characterise entangled states through measurements on individual particles makes the new approach efficient, and means also that it can be extended to systems with several particles.

The ability to gain information about entangled states of several particles is a central aspect of this work, explains Christandl: "For three particles, there are two fundamentally different types of entanglement, one of which is generally considered more 'useful' than the other. For four particles, there is already an infinite number of ways to entangle the particles. And with every additional particle, the complexity of this situation gets even more complex." This quickly growing degree of complexity explains why, despite a large number of works that have been written on entangled states, only very few systems with more than a handful of particles have been fully characterized. "Our method of entanglement polytopes helps to tame this complexity by classifying the states into finitely many families," adds Michael Walter.

Quantum technologies on the horizon

Quantum systems with several particles are of interest because they could take an important role in future technologies. In recent years, scientists have proposed, and partly implemented, a wide variety of applications that use quantum-mechanical properties to do things that are outright impossible in the framework of classical physics. These applications range from the tap-proof transmission of messages, to efficient algorithms for solving computational problems, to tech-niques that improve the resolution of photolithographic methods. In these applications, entangled states are an essential resource, precisely because they embody a fundamental quantum-mechanical phenomenon with no counterpart in classical physics. When suitably used, these complex states can open up avenues to novel applications.

A perfect match

The link between quantum mechanical states and geometric shapes has something to offer not only to physicists, but also to mathematicians. According to Doran, the mathematical methods that have been developed for this project may be exploited in other areas of mathematics and physics, but also in theoretical computer science. "It usually makes pure mathematicians a bit uncomfortable if someone with an 'applied' problem wants to hit it with fancy mathematical machinery, because the fit of theory to problem is rarely good," says Doran. "Here it is perfect. The potential for long-term mutually beneficial feedback between pure mathematicians and quantum information theory and experiment is quite substantial."

The method of entanglement polytopes, however, is more than just an elegant mathematical construct. The researchers have shown in their calculations that the technique should work reliably under realistic experimental conditions, signalling that the new method can be used directly in those systems in which the novel quantum technologies are to be implemented. And such practical applications might eventually help to gain a better understand of quantum mechanics.

Reference

Walter M, Doran B, Gross D, Christandl M: Entanglement Polytopes: Multi-Particle Entanglement from single-particle information. Science, 2013

####

For more information, please click here

Contacts:
Matthias Christandl

41-446-332-592

Copyright © ETH Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Physics

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Possible Futures

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Discoveries

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

Quantum nanoscience

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Scientists set traps for atoms with single-particle precision: Technique may enable large-scale atom arrays for quantum computing November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project