Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Spooky action put to order Different types of 'entanglement' classified

Researchers at ETH Zurich have developed a method of assigning classes of complex quantum states to geometric objects known as polytopes.Image: Amanda Eisenhut / ETH Zurich
Researchers at ETH Zurich have developed a method of assigning classes of complex quantum states to geometric objects known as polytopes.

Image: Amanda Eisenhut / ETH Zurich

Abstract:
"I think I can safely say that nobody understands quantum mechanics." Thus spoke the American physicist Richard Feynman — underlining that even leading scientists struggle to develop an intuitive feeling for quantum mechanics. One reason for this is that quantum phenomena often have no counterpart in classical physics. A typical example is the quantum entanglement: Entangled particles seem to directly influence one another, no matter how widely separated they are. It looks as if the particles can 'communicate' with one another across arbitrary distances. Albert Einstein, famously, called this seemingly paradoxical behaviour "spooky action at a distance."

Spooky action put to order Different types of 'entanglement' classified

Zurich, Switzerland | Posted on June 6th, 2013

When more than two particles are entangled, the mutual influence between them can come in different forms. These different manifestations of the entanglement phenomenon are not fully understood, and so far there exists no general method to systematically group entangled states into categories. Reporting in the journal Science, a group of mathematicians and physicists around Matthias Christandl, professor at the Institute for Theoretical Physics, provides an important contribution towards putting the "spooky action" to order. The team has developed a method that allows them to assigning a given quantum state to a class of possible entanglement states. Such a method is important because, among other things, it helps to predict how potentially useful the quantum state can be in technological applications.

Putting entangled states in their place

Together with Brent Doran, a professor in the Department for Mathematics at ETH Zurich, and David Gross, a professor at the University of Freiburg in Germany, Christandl and his PhD student Michael Walter, first author of the Science publication, introduce a method in which different classes of entangled states are associated with geometric objects known as polytopes. These objects represent the "space" that is available to the states of a particular entanglement class. Whether or not a given state belongs to a specific polytope can be determined by making a number of measurements on the individual particles. Importantly, there is no need to measure several particles simultaneously, as is necessary in other methods. The possibility to characterise entangled states through measurements on individual particles makes the new approach efficient, and means also that it can be extended to systems with several particles.

The ability to gain information about entangled states of several particles is a central aspect of this work, explains Christandl: "For three particles, there are two fundamentally different types of entanglement, one of which is generally considered more 'useful' than the other. For four particles, there is already an infinite number of ways to entangle the particles. And with every additional particle, the complexity of this situation gets even more complex." This quickly growing degree of complexity explains why, despite a large number of works that have been written on entangled states, only very few systems with more than a handful of particles have been fully characterized. "Our method of entanglement polytopes helps to tame this complexity by classifying the states into finitely many families," adds Michael Walter.

Quantum technologies on the horizon

Quantum systems with several particles are of interest because they could take an important role in future technologies. In recent years, scientists have proposed, and partly implemented, a wide variety of applications that use quantum-mechanical properties to do things that are outright impossible in the framework of classical physics. These applications range from the tap-proof transmission of messages, to efficient algorithms for solving computational problems, to tech-niques that improve the resolution of photolithographic methods. In these applications, entangled states are an essential resource, precisely because they embody a fundamental quantum-mechanical phenomenon with no counterpart in classical physics. When suitably used, these complex states can open up avenues to novel applications.

A perfect match

The link between quantum mechanical states and geometric shapes has something to offer not only to physicists, but also to mathematicians. According to Doran, the mathematical methods that have been developed for this project may be exploited in other areas of mathematics and physics, but also in theoretical computer science. "It usually makes pure mathematicians a bit uncomfortable if someone with an 'applied' problem wants to hit it with fancy mathematical machinery, because the fit of theory to problem is rarely good," says Doran. "Here it is perfect. The potential for long-term mutually beneficial feedback between pure mathematicians and quantum information theory and experiment is quite substantial."

The method of entanglement polytopes, however, is more than just an elegant mathematical construct. The researchers have shown in their calculations that the technique should work reliably under realistic experimental conditions, signalling that the new method can be used directly in those systems in which the novel quantum technologies are to be implemented. And such practical applications might eventually help to gain a better understand of quantum mechanics.

Reference

Walter M, Doran B, Gross D, Christandl M: Entanglement Polytopes: Multi-Particle Entanglement from single-particle information. Science, 2013

####

For more information, please click here

Contacts:
Matthias Christandl

41-446-332-592

Copyright © ETH Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Physics

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Nano-pea pod model widens electronics applications: A new theoretical model explains how a nanostructure, such as the nano-pea pod, can exhibit localised electrons September 4th, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Discoveries

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Announcements

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Printing/Lithography/Inkjet/Inks

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Quantum nanoscience

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE