Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Study suggests second life for possible spintronic materials: Ohio University research merges manganese, gallium nitride in uniform layer

This image shows a 3-D rendering of a stable manganese gallium nitride surface structure.

Credit: A.R. Smith, Ohio University
This image shows a 3-D rendering of a stable manganese gallium nitride surface structure.

Credit: A.R. Smith, Ohio University

Abstract:
Ten years ago, scientists were convinced that a combination of manganese and gallium nitride could be a key material to create spintronics, the next generation of electronic devices that operate on properties found at the nanoscale. But researchers grew discouraged when experiments indicated that the two materials were as harmonious as oil and water.

Study suggests second life for possible spintronic materials: Ohio University research merges manganese, gallium nitride in uniform layer

Athens, OH | Posted on June 6th, 2013

A new study led by Ohio University physicists suggests that scientists should take another look at this materials duo, which once was heralded for its potential to be the building block for devices that can function at or above room temperature.

"We've found a way—at least on the surface of the material—of incorporating a uniform layer," said Arthur Smith, a professor of physics and astronomy at Ohio University who leads the international collaboration of Argentinian and Spanish researchers.

The scientists made two important changes to create the material merger, they report in the journal Physical Review B. First, they used the nitrogen polarity of gallium nitride, whereas conventional experiments used the gallium polarity to attach to the manganese, Smith explained. Second, they heated the sample.

At lower temperatures (less than 105 degrees Celsius), the manganese atoms "float" on the outer layer of gallium atoms. When the scientists raised the temperature about 100 degrees Celsius, Smith said, the atoms connected to the nitrogen layer underneath, creating a manganese-nitrogen bond. This bond remains stable, even at very high temperatures.

The theoretical scientists accurately predicted that a "triplet" structure of three manganese atoms would form a metastable structure at low temperatures, Smith said. But at higher temperatures, those manganese atoms break apart and bond with nitrogen. Valeria Ferrari of the Centro Atómico Constituyentes said her group performed quantum mechanical simulations to test which model structures have the lowest energy, which suggested both the trimer structure and the manganese-nitrogen bonded structure.

Now that scientists have shown that they can create a stable structure with these materials, they will investigate whether it has the magnetic properties at room temperature necessary to function as a spintronic material.
###

The study authors are Abhijit Chinchore, Kangkang Wang, Meng Shi, Andrada Mandru, Yinghao Liu, Muhammad Haider and Arthur Smith of the Nanoscale and Quantum Phenomena Institute at Ohio University; Valeria Ferrari and Maria Andrea Barral of the Centro Atómico Constituyentes, GIyA, CNEA, San Martín, Buenos Aires, Argentina; and Pablo Ordejón, Centre d'Investigació en Nanociència i Nanotecnologia, Barcelona, Spain.

The research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (STM studies of nanoscale spintronic nitride systems), the National Science Foundation (advancing nanospintronics through international collaboration), CONICET, ANPCyT and Spanish MICINN. The Ohio Supercomputing Center provided computer time.

####

For more information, please click here

Contacts:
Arthur Smith
(740) 597-2576


Andrea Gibson
(740) 597-2166

Copyright © Ohio University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Physics

New breed of optical soliton wave discovered September 9th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Spintronics

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

Swapping substrates improves edges of graphene nanoribbons: Using inert boron nitride instead of silica creates precise zigzag edges in monolayer graphene August 2nd, 2016

Chip Technology

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

Discoveries

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Announcements

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Bringing graphene speakers to the mobile market (video) September 12th, 2016

Novel nanoscale detection of real-time DNA amplification holds promise for diagnostics: Research team led by Nagoya University develop a label-free method for detecting DNA amplification in real time based on refractive index changes in diffracted light September 12th, 2016

Research partnerships

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Quantum nanoscience

Chains of nanogold – forged with atomic precision September 23rd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic