Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Metamaterial Flexible Sheets Could Transform Optics: New design flattens bulky optical devices

(a) Photograph of an ultrathin (72 µm thick) metamaterial sample. (b) Illustration of how the metamaterial redirects an electromagnetic wave, which would not happen for a normal thin film. The structure is not drawn to scale. Images courtesy Los Alamos National Laboratory
(a) Photograph of an ultrathin (72 µm thick) metamaterial sample. (b) Illustration of how the metamaterial redirects an electromagnetic wave, which would not happen for a normal thin film. The structure is not drawn to scale. Images courtesy Los Alamos National Laboratory

Abstract:
New ultrathin, planar, lightweight, and broadband polarimetric photonic devices and optics could result from recent research by a team of Los Alamos National Laboratory scientists. The advances would boost security screening systems, infrared thermal cameras, energy harvesting, and radar systems.

Metamaterial Flexible Sheets Could Transform Optics: New design flattens bulky optical devices

Los Alamos, NM | Posted on June 5th, 2013

This development is a key step toward replacing bulky conventional optics with flexible sheets that are about the thickness of a human hair and weighing a fraction of an ounce. The advance is in the design of artificially created materials, called metamaterials, that give scientists new levels of control over light wavelengths.

The research was reported online in Science magazine, "Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction." The team demonstrated broadband, high-performance linear polarization conversion using ultrathin planar metamaterials, enabling possible applications in the terahertz (THz) frequency regime. Their design can be scaled to other frequency ranges from the microwave through infrared.

Polarization is one of the basic properties of electromagnetic waves, describing the direction of the electric field oscillation, and thus conveying valuable information in signal transmission and sensitive measurements.

"Conventional methods for advanced polarization control impose very demanding requirements on material properties and fabrication methods, but they attain only limited performance," said Hou-Tong Chen, the senior researcher on the project.

Metamaterial-based polarimetric devices are particularly attractive in the terahertz frequency range due to the lack of suitable natural materials for THz applications. Currently available designs suffer from either very limited bandwidth or high losses. The Los Alamos designs further enable the near-perfect realization of the generalized laws of reflection/refraction. According to the researchers, this can be exploited to make flat lenses, prisms, and other optical elements in a fashion very different from the curved, conventional designs that we use in our daily life.

The Los Alamos National Laboratory Directed Research and Development (LDRD) program funded a portion of the research. Part of the work was performed at the Center for Integrated Nanotechnologies (CINT).

Reference: ‘Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction," Science, published online in Science Express, May 16, DOI: 10.1126/science.1235399, by Nathaniel K. Grady, Jane E. Heyes, Dibakar Roy Chowdhury, Yong Zeng, Matthew T. Reiten, Abul K. Azad, Antoinette J. Taylor, Diego A. R. Dalvit and Hou-Tong Chen of Los Alamos National Laboratory.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Nancy Ambrosiano
505.667.0471

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Understanding tiny droplets can make for better weather forecasts: Climate change models also benefit from understanding fundamental thermodynamics of water droplets May 6th, 2016

Effect of the Van-der-Waals and intramolecular forces: The tertiary system of nucleotide chain -- gold nanoparticles--- carbon nanotube represents a great interest in the modern research and application of the bio-nano-technologies May 6th, 2016

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Laboratories

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Spintronics

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

Scientists push valleytronics 1 step closer to reality: Berkeley Lab and UC Berkeley researchers control a promising new way to encode electrons April 6th, 2016

Discoveries

Understanding tiny droplets can make for better weather forecasts: Climate change models also benefit from understanding fundamental thermodynamics of water droplets May 6th, 2016

Effect of the Van-der-Waals and intramolecular forces: The tertiary system of nucleotide chain -- gold nanoparticles--- carbon nanotube represents a great interest in the modern research and application of the bio-nano-technologies May 6th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Materials/Metamaterials

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Announcements

Understanding tiny droplets can make for better weather forecasts: Climate change models also benefit from understanding fundamental thermodynamics of water droplets May 6th, 2016

Effect of the Van-der-Waals and intramolecular forces: The tertiary system of nucleotide chain -- gold nanoparticles--- carbon nanotube represents a great interest in the modern research and application of the bio-nano-technologies May 6th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Understanding tiny droplets can make for better weather forecasts: Climate change models also benefit from understanding fundamental thermodynamics of water droplets May 6th, 2016

Effect of the Van-der-Waals and intramolecular forces: The tertiary system of nucleotide chain -- gold nanoparticles--- carbon nanotube represents a great interest in the modern research and application of the bio-nano-technologies May 6th, 2016

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Energy

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Photonics/Optics/Lasers

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic