Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Metamaterial Flexible Sheets Could Transform Optics: New design flattens bulky optical devices

(a) Photograph of an ultrathin (72 µm thick) metamaterial sample. (b) Illustration of how the metamaterial redirects an electromagnetic wave, which would not happen for a normal thin film. The structure is not drawn to scale. Images courtesy Los Alamos National Laboratory
(a) Photograph of an ultrathin (72 µm thick) metamaterial sample. (b) Illustration of how the metamaterial redirects an electromagnetic wave, which would not happen for a normal thin film. The structure is not drawn to scale. Images courtesy Los Alamos National Laboratory

Abstract:
New ultrathin, planar, lightweight, and broadband polarimetric photonic devices and optics could result from recent research by a team of Los Alamos National Laboratory scientists. The advances would boost security screening systems, infrared thermal cameras, energy harvesting, and radar systems.

Metamaterial Flexible Sheets Could Transform Optics: New design flattens bulky optical devices

Los Alamos, NM | Posted on June 5th, 2013

This development is a key step toward replacing bulky conventional optics with flexible sheets that are about the thickness of a human hair and weighing a fraction of an ounce. The advance is in the design of artificially created materials, called metamaterials, that give scientists new levels of control over light wavelengths.

The research was reported online in Science magazine, "Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction." The team demonstrated broadband, high-performance linear polarization conversion using ultrathin planar metamaterials, enabling possible applications in the terahertz (THz) frequency regime. Their design can be scaled to other frequency ranges from the microwave through infrared.

Polarization is one of the basic properties of electromagnetic waves, describing the direction of the electric field oscillation, and thus conveying valuable information in signal transmission and sensitive measurements.

"Conventional methods for advanced polarization control impose very demanding requirements on material properties and fabrication methods, but they attain only limited performance," said Hou-Tong Chen, the senior researcher on the project.

Metamaterial-based polarimetric devices are particularly attractive in the terahertz frequency range due to the lack of suitable natural materials for THz applications. Currently available designs suffer from either very limited bandwidth or high losses. The Los Alamos designs further enable the near-perfect realization of the generalized laws of reflection/refraction. According to the researchers, this can be exploited to make flat lenses, prisms, and other optical elements in a fashion very different from the curved, conventional designs that we use in our daily life.

The Los Alamos National Laboratory Directed Research and Development (LDRD) program funded a portion of the research. Part of the work was performed at the Center for Integrated Nanotechnologies (CINT).

Reference: ‘Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction," Science, published online in Science Express, May 16, DOI: 10.1126/science.1235399, by Nathaniel K. Grady, Jane E. Heyes, Dibakar Roy Chowdhury, Yong Zeng, Matthew T. Reiten, Abul K. Azad, Antoinette J. Taylor, Diego A. R. Dalvit and Hou-Tong Chen of Los Alamos National Laboratory.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Nancy Ambrosiano
505.667.0471

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

News and information

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spintronics

A highway for spin waves: Researchers in Dresden develop process for controlling innovative information media February 1st, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

Bismuth-based nanoribbons show 'topological' transport, potential for new technologies January 22nd, 2016

First all-antiferromagnetic memory device could get digital data storage in a spin January 16th, 2016

Discoveries

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Materials/Metamaterials

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Announcements

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Energy

Canadian physicists discover new properties of superconductivity February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

February 4th, 2016

Putting silicon 'sawdust' in a graphene cage boosts battery performance: Approach could remove major obstacles to increasing the capacity of lithium-ion batteries January 30th, 2016

Photonics/Optics/Lasers

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic