Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New method of mass-producing high-quality DNA molecules

Production of oligonucleotidesCredit: Björn Högberg
Production of oligonucleotides

Credit: Björn Högberg

Abstract:
A new method of manufacturing short, single-stranded DNA molecules can solve many of the problems associated with current production methods. The new method, which is described in the scientific periodical Nature Methods, can be of value to both DNA nanotechnology and the development of drugs consisting of DNA fragments.

New method of mass-producing high-quality DNA molecules

Stockholm, Sweden | Posted on June 2nd, 2013

The novel technique for manufacturing short, single-stranded DNA molecules - or oligonucleotides - has been developed by researchers at Karolinska Institutet in Sweden and Harvard University. Such DNA fragments constitute a basic tool for researchers and play a key part in many fields of science. Many of the recent advances in genetic and molecular biological research and development, such as the ability to quickly scan an organism's genome, would not have been possible without oligonucleotides.

The new method is versatile and able to solve problems that currently restrict the production of DNA fragments.

"We've used enzymatic production methods to create a system that not only improves the quality of the manufactured oligonucleotides but that also makes it possible to scale up production using bacteria in order to produce large amounts of DNA copies cheaply," says co-developer Björn Högberg at the Swedish Medical Nanoscience Center, part of the Department of Neuroscience at Karolinska Institutet in Sweden.

The process of bioproduction, whereby bacteria are used to copy DNA sequences, enables the manufacture of large amounts of DNA copies at a low cost. Unlike current methods of synthesising oligonucleotides, where the number of errors increases with the length of the sequence, this new method according to the developers also works well for long oligonucleotides of several hundred nitrogenous bases.

The DNA molecules are first formed as a long string of single-stranded DNA in which the sequence of interest is repeated several times. The long strand forms tiny regions called hairpins, where the strand folds back on itself. These hairpins can then be cut up by enzymes, which serve as a molecular-biological pair of scissors that cuts the DNA at selected sites. Several different oligonucleotides can thus be produced at the same time in a perfectly balanced combination, which is important if they are to be crystallised or used therapeutically.

"Oligonucleotide-based drugs are already available, and it's very possible that our method could be used to produce purer and cheaper versions of these drugs," says Dr Björn Högberg.

The project was financed by grants from the Swedish Research Council, the Swedish governmental agency for innovation systems (Vinnova) and Carl Bennet AB.

####

About Karolinska Institutet
Karolinska Institutet is one of the world’s leading medical universities. Its mission is to contribute to the improvement of human health through research and education. Karolinska Institutet accounts for over 40 per cent of the medical academic research conducted in Sweden, and offers the country’s broadest range of education in medicine and health sciences. Since 1901 the Nobel Assembly at Karolinska Institutet has selected the Nobel laureates in Physiology or Medicine. More information on ki.se.

For more information, please click here

Contacts:
Katarina Sternudd
+46 8 524 838 95


Björn Högberg, PhD, Assistant Professor
Department of Neuroscience, Karolinska Institutet
Swedish Medical Nanoscience Center
Tel: +46 (0)8-524 870 36

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

More about Björn Högberg's research:

Related News Press

News and information

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Nanomedicine

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

A spoonful of sugar in silver nanoparticles to regulate their toxicity January 21st, 2015

Discoveries

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Announcements

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Research partnerships

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

Charge instability detected across all types of copper-based superconductors: Findings may help researchers synthesize materials that can superconduct at room temperature January 16th, 2015

Gold nanoparticles show promise for early detection of heart attacks: NYU School of Engineering Professors collaborate with researchers from Peking University on a new test strip January 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE