Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Stanford scientists develop high-efficiency zinc-air battery

This is a rechargeable zinc-oxide battery in a tri-electrode configuration with cobalt-oxide/carbon nanotube and iron-nickel/layered double hydroxide catalysts for charge and discharge, respectively.

Credit: Yanguang Li, Stanford University
This is a rechargeable zinc-oxide battery in a tri-electrode configuration with cobalt-oxide/carbon nanotube and iron-nickel/layered double hydroxide catalysts for charge and discharge, respectively.

Credit: Yanguang Li, Stanford University

Abstract:
Stanford University scientists have developed an advanced zinc-air battery with higher catalytic activity and durability than similar batteries made with costly platinum and iridium catalysts. The results, published in the May 7 online edition of the journal Nature Communications, could lead to the development of a low-cost alternative to conventional lithium-ion batteries widely used today.

Stanford scientists develop high-efficiency zinc-air battery

Stanford, CA | Posted on May 30th, 2013

"There have been increasing demands for high-performance, inexpensive and safe batteries for portable electronics, electric vehicles and other energy storage applications," said Hongjie Dai, a professor chemistry at Stanford and lead author of the study. "Metal-air batteries offer a possible low-cost solution."

According to Dai, most attention has focused on lithium-ion batteries, despite their limited energy density (energy stored per unit volume), high cost and safety problems. "With ample supply of oxygen from the atmosphere, metal-air batteries have drastically higher theoretical energy density than either traditional aqueous batteries or lithium-ion batteries," he said. "Among them, zinc-air is technically and economically the most viable option."

Zinc-air batteries combine atmospheric oxygen and zinc metal in a liquid alkaline electrolyte to generate electricity with a byproduct of zinc oxide. When the process is reversed during recharging, oxygen and zinc metal are regenerated.

"Zinc-air batteries are attractive because of the abundance and low cost of zinc metal, as well as the non-flammable nature of aqueous electrolytes, which make the batteries inherently safe to operate," Dai said. "Primary (non-rechargeable) zinc-air batteries have been commercialized for medical and telecommunication applications with limited power density. However, it remains a grand challenge to develop electrically rechargeable batteries, with the stumbling blocks being the lack of efficient and robust air catalysts, as well as the limited cycle life of the zinc electrodes."

Active and durable electrocatalysts on the air electrode are required to catalyze the oxygen-reduction reaction during discharge and the oxygen-evolution reaction during recharge. In zinc-air batteries, both catalytic reactions are sluggish, Dai said.

Recently, his group has developed a number of high-performance electrocatalysts made with non-precious metal oxide or nanocrystals hybridized with carbon nanotubes. These catalysts produced higher catalytic activity and durability in alkaline electrolytes than catalysts made with platinum and other precious metals.

"We found that similar catalysts greatly boosted the performance of zinc-air batteries," Dai said. both primary and rechargeable. "A combination of a cobalt-oxide hybrid air catalyst for oxygen reduction and a nickel-iron hydroxide hybrid air catalyst for oxygen evolution resulted in a record high-energy efficiency for a zinc-air battery, with a high specific energy density more than twice that of lithium-ion technology."

The novel battery also demonstrated good reversibility and stability over long charge and discharge cycles over several weeks. "This work could be an important step toward developing practical rechargeable zinc-air batteries, even though other challenges relating to the zinc electrode and electrolyte remain to be solved," Dai added.

###

Other authors of the Nature Communications study are Yanguang Li (lead author), Ming Gong, Yongye Liang, Ju Feng, Ji-Eun Kim, Hailiang Wang, Guosong Hong and Bo Zhang of the Stanford Department of Chemistry.

The study was supported by Intel, a Stanford Global Climate and Energy Project exploratory program and a Stinehart/Reed Award from the Stanford Precourt Institute for Energy.

This article was written by Mark Shwartz, Precourt Institute for Energy at Stanford University.

####

For more information, please click here

Contacts:
Mark Shwartz

650-723-9296

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanotubes/Buckyballs/Fullerenes

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Cellulose from wood can be printed in 3-D June 17th, 2015

Announcements

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Automotive/Transportation

June 29th, 2015

Buckle up for fast ionic conduction June 16th, 2015

A protective shield for sensitive catalysts: Hydrogels block harmful oxygen June 15th, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project