Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Stitch Defects into the World’s Thinnest Semiconductor

A false-color electron microscopy image showing the star-shaped crystals in monolayers of two-dimensional semiconducting molybdenum disulfide. The red, yellow, and blue colors represent two dominant crystal orientations that are stitched together by a line of atomic defects. Image courtesy of Pinshane Y. Huang and David A. Muller
A false-color electron microscopy image showing the star-shaped crystals in monolayers of two-dimensional semiconducting molybdenum disulfide. The red, yellow, and blue colors represent two dominant crystal orientations that are stitched together by a line of atomic defects.

Image courtesy of Pinshane Y. Huang and David A. Muller

Abstract:
In pioneering new research at Columbia University, scientists have grown high-quality crystals of molybdenum disulfide (MoS2), the world's thinnest semiconductor, and studied how these crystals stitch together at the atomic scale to form continuous sheets. Through beautiful images of strikingly symmetric stars and triangles hundreds of microns across, they have uncovered key insights into the optical and electronic properties of this new material, which can be either conducting or insulating to form the basic "on-off switch" for all digital electronics. The study is published in the May 5, 2013, issue of Nature Materials.

Researchers Stitch Defects into the World’s Thinnest Semiconductor

New York, NY | Posted on May 22nd, 2013

"Our research is the first to systematically examine what kinds of defects result from these large growths, and to investigate how those defects change its properties," says James Hone, professor of mechanical engineering at Columbia Engineering, who led the study. "Our results will help develop ways to use this new material in atomically thin electronics that will become integral components of a whole new generation of revolutionary products such as flexible solar cells that conform to the body of a car."

This multidisciplinary collaboration by the Energy Frontier Research Center at Columbia University with Cornell University's Kavli Institute for Nanoscale Science focused on molybdenum disulfide because of its potential to create anything from highly efficient, flexible solar cells to conformable touch displays. Earlier work from Columbia demonstrated that monolayer MoS2 has an electronic structure distinct from the bulk form, and the researchers are excited about exploring other atomically thin metal dichalcogenides, which should have equally interesting properties. MoS2 is in a class of materials called transition metal dichalcogenides, which can be metals, semiconductors, dielectrics, and even superconductors.

"This material is the newest in a growing family of two-dimensional crystals," says Arend van der Zande, a research fellow at the Columbia Energy Frontier Research Center and one of the paper's three lead authors. "Graphene, a single sheet of carbon atoms, is the thinnest electrical conductor we know. With the addition of the monolayer molybdenum disulfide and other metal dichalcogenides, we have all the building blocks for modern electronics that must be created in atomically thin form. For example, we can now imagine sandwiching two different monolayer transition metal dichalcogenides between layers of graphene to make solar cells that are only eight atoms thick—20 thousand times smaller than a human hair!"

Until last year, the majority of experiments studying MoS2 were done by a process called mechanical exfoliation, which only produces samples just a few micrometers in size. "While these tiny specimens are fine for scientific studies," notes Daniel Chenet, a PhD in Hone's lab and another lead author, "they are much too small for use in any technological application. Figuring out how to grow these materials on a large scale is critical."

To study the material, the researchers refined an existing technique to grow large, symmetric crystals up to 100 microns across, but only three atoms thick. "If we could expand one of these crystals to the thickness of a sheet of plastic wrap, it would be large enough to cover a football field—and it would not have any misaligned atoms," says Pinshane Huang, a PhD student in the David Muller lab at Cornell and the paper's third lead author.

For use in many applications, these crystals need to be joined together into continuous sheets like patches on a quilt. The connections between the crystals, called grain boundaries, can be as important as the crystals themselves in determining the material's performance on a large scale. "The grain boundaries become important in any technology," says Hone. "Say, for example, we want to make a solar cell. Now we need to have meters of this material, not micrometers, and that means that there will be thousands of grain boundaries. We need to understand what they do so we can control them."

The team used atomic-resolution electron microscopy to examine the grain boundaries of this material, and saw lines of misaligned atoms. Once they knew where to find the grain boundaries, and what they looked like, the team could study the effect of a single grain boundary on the properties of the MoS2. To do this, they built tiny transistors, the most basic component in all of electronics, out of the crystals and saw that the single, defective line of atoms at the grain boundaries could drastically change the key electronic and optical properties of the MoS2.

"We've made a lot of progress in controlling the growth of this new ‘wonder' nanomaterial and are now developing techniques to integrate it into many new technologies," Hone adds. "We're only just beginning to scratch the surface of what we can make with these materials and what their properties are. For instance, we can easily remove this material from the growth substrate and transfer it on to any arbitrary surface, which enables us to integrate it into large-scale, flexible electronics and solar cells."

The crystal synthesis, optical measurements, electronic measurements, and theory were all performed by research groups at Columbia Engineering. The growth and electrical measurements were made by the Hone lab in mechanical engineering; the optical measurements were carried out in the Tony Heinz lab in physics. The structural modeling and electronic structure calculations were performed by the David Reichman lab in chemistry. The electron microscopy was performed by atomic imaging experts in the David Muller lab at Cornell University's School of Applied and Engineering Physics, and the Kavli Institute at Cornell for Nanoscale Science.

The study was sponsored by the Columbia Energy Frontier Research Center, with additional support provided by the National Science Foundation through the Cornell Center for Materials Research.

####

For more information, please click here

Contacts:
Holly Evarts
Director
Strategic Communications and Media Relations
347-453-7408 (c)
212-854-3206 (o)

Copyright © Columbia Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Flexible Electronics

Haydale Announce Dedicated Graphene Inks Manufacturing Capability March 25th, 2015

Caltech scientists develop cool process to make better graphene March 18th, 2015

Breakthrough in OLED technology March 2nd, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Chip Technology

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

Discoveries

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Tools

LAMDAMAP 2015 hosted by the University March 26th, 2015

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Nanorobotic agents open the blood-brain barrier, offering hope for new brain treatments March 25th, 2015

Energy

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Hong Kong Investors Bullish on Dais Analytic Invest $5.75M, Provide $60M Contract, and Create New Joint Venture Company March 26th, 2015

Automotive/Transportation

Clean energy future: New cheap and efficient electrode for splitting water March 18th, 2015

Imperfect graphene opens door to better fuel cells: Membrane could lead to fast-charging batteries for transportation March 18th, 2015

Researchers synthesize new thin-film material for use in fuel cells: Article in the journal APL Materials shows how to grow Bi2Pt2O7 pyrochlore, potentially a more effective cathode for future fuel cells March 10th, 2015

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide March 2nd, 2015

Research partnerships

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Solar/Photovoltaic

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE