Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers Stitch Defects into the World’s Thinnest Semiconductor

A false-color electron microscopy image showing the star-shaped crystals in monolayers of two-dimensional semiconducting molybdenum disulfide. The red, yellow, and blue colors represent two dominant crystal orientations that are stitched together by a line of atomic defects. Image courtesy of Pinshane Y. Huang and David A. Muller
A false-color electron microscopy image showing the star-shaped crystals in monolayers of two-dimensional semiconducting molybdenum disulfide. The red, yellow, and blue colors represent two dominant crystal orientations that are stitched together by a line of atomic defects.

Image courtesy of Pinshane Y. Huang and David A. Muller

Abstract:
In pioneering new research at Columbia University, scientists have grown high-quality crystals of molybdenum disulfide (MoS2), the world's thinnest semiconductor, and studied how these crystals stitch together at the atomic scale to form continuous sheets. Through beautiful images of strikingly symmetric stars and triangles hundreds of microns across, they have uncovered key insights into the optical and electronic properties of this new material, which can be either conducting or insulating to form the basic "on-off switch" for all digital electronics. The study is published in the May 5, 2013, issue of Nature Materials.

Researchers Stitch Defects into the World’s Thinnest Semiconductor

New York, NY | Posted on May 22nd, 2013

"Our research is the first to systematically examine what kinds of defects result from these large growths, and to investigate how those defects change its properties," says James Hone, professor of mechanical engineering at Columbia Engineering, who led the study. "Our results will help develop ways to use this new material in atomically thin electronics that will become integral components of a whole new generation of revolutionary products such as flexible solar cells that conform to the body of a car."

This multidisciplinary collaboration by the Energy Frontier Research Center at Columbia University with Cornell University's Kavli Institute for Nanoscale Science focused on molybdenum disulfide because of its potential to create anything from highly efficient, flexible solar cells to conformable touch displays. Earlier work from Columbia demonstrated that monolayer MoS2 has an electronic structure distinct from the bulk form, and the researchers are excited about exploring other atomically thin metal dichalcogenides, which should have equally interesting properties. MoS2 is in a class of materials called transition metal dichalcogenides, which can be metals, semiconductors, dielectrics, and even superconductors.

"This material is the newest in a growing family of two-dimensional crystals," says Arend van der Zande, a research fellow at the Columbia Energy Frontier Research Center and one of the paper's three lead authors. "Graphene, a single sheet of carbon atoms, is the thinnest electrical conductor we know. With the addition of the monolayer molybdenum disulfide and other metal dichalcogenides, we have all the building blocks for modern electronics that must be created in atomically thin form. For example, we can now imagine sandwiching two different monolayer transition metal dichalcogenides between layers of graphene to make solar cells that are only eight atoms thick—20 thousand times smaller than a human hair!"

Until last year, the majority of experiments studying MoS2 were done by a process called mechanical exfoliation, which only produces samples just a few micrometers in size. "While these tiny specimens are fine for scientific studies," notes Daniel Chenet, a PhD in Hone's lab and another lead author, "they are much too small for use in any technological application. Figuring out how to grow these materials on a large scale is critical."

To study the material, the researchers refined an existing technique to grow large, symmetric crystals up to 100 microns across, but only three atoms thick. "If we could expand one of these crystals to the thickness of a sheet of plastic wrap, it would be large enough to cover a football field—and it would not have any misaligned atoms," says Pinshane Huang, a PhD student in the David Muller lab at Cornell and the paper's third lead author.

For use in many applications, these crystals need to be joined together into continuous sheets like patches on a quilt. The connections between the crystals, called grain boundaries, can be as important as the crystals themselves in determining the material's performance on a large scale. "The grain boundaries become important in any technology," says Hone. "Say, for example, we want to make a solar cell. Now we need to have meters of this material, not micrometers, and that means that there will be thousands of grain boundaries. We need to understand what they do so we can control them."

The team used atomic-resolution electron microscopy to examine the grain boundaries of this material, and saw lines of misaligned atoms. Once they knew where to find the grain boundaries, and what they looked like, the team could study the effect of a single grain boundary on the properties of the MoS2. To do this, they built tiny transistors, the most basic component in all of electronics, out of the crystals and saw that the single, defective line of atoms at the grain boundaries could drastically change the key electronic and optical properties of the MoS2.

"We've made a lot of progress in controlling the growth of this new ‘wonder' nanomaterial and are now developing techniques to integrate it into many new technologies," Hone adds. "We're only just beginning to scratch the surface of what we can make with these materials and what their properties are. For instance, we can easily remove this material from the growth substrate and transfer it on to any arbitrary surface, which enables us to integrate it into large-scale, flexible electronics and solar cells."

The crystal synthesis, optical measurements, electronic measurements, and theory were all performed by research groups at Columbia Engineering. The growth and electrical measurements were made by the Hone lab in mechanical engineering; the optical measurements were carried out in the Tony Heinz lab in physics. The structural modeling and electronic structure calculations were performed by the David Reichman lab in chemistry. The electron microscopy was performed by atomic imaging experts in the David Muller lab at Cornell University's School of Applied and Engineering Physics, and the Kavli Institute at Cornell for Nanoscale Science.

The study was sponsored by the Columbia Energy Frontier Research Center, with additional support provided by the National Science Foundation through the Cornell Center for Materials Research.

####

For more information, please click here

Contacts:
Holly Evarts
Director
Strategic Communications and Media Relations
347-453-7408 (c)
212-854-3206 (o)

Copyright © Columbia Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Flexible Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Breaking through the limits of stretchable semiconductors with molecular brakes that harness light June 9th, 2023

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project