Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > How Gold Nanoparticles Can Help Fight Ovarian Cancer

Abstract:
Positively charged gold nanoparticles are usually toxic to cells, but cancer cells somehow manage to avoid nanoparticle toxicity. Mayo Clinic researchers found out why and determined how to make the nanoparticles effective against ovarian cancer cells. The discovery is detailed in the current online issue of the Journal of Biological Chemistry.

How Gold Nanoparticles Can Help Fight Ovarian Cancer

Rochester, MN | Posted on May 21st, 2013

"This study identifies a novel mechanism that protects ovarian cancer cells by preventing the cell death or apoptosis which should occur when they encounter positively charged nanoparticles," say the senior authors of this study, Priyabrata Mukherjee, Ph.D., a Mayo Clinic molecular biologist, and Y. S. Prakash, M.D., Ph.D., a Mayo Clinic anesthesiologist and physiologist.

Why Cancer Cells Survived

Gold nanoparticles can have many medical uses, from imaging and aiding diagnoses to delivering therapies. In this case, using a special preparation to put positive ionic charges on the surface, the nanoparticle is intended to act as a targeted destructor of tumor cells while leaving healthy cells alone. The nanoparticles are supposed to kill cells by causing cellular calcium ion levels to increase. But researchers discovered that a regulatory protein in the mitochondria essentially buffers the rising calcium by transporting it into the mitochondria, thus subverting cell death. Cancer cells have an abundance of this transporter and may thus be protected from nanoparticle toxicity.

The research team discovered that if they inhibit calcium uptake into the mitochondria, sufficient cellular stress builds up, making the gold nanoparticles more effective in destroying cancer cells.

The researchers say that understanding how mitochondrial transport mechanisms work will help in the design of targeted therapies against cancer. They called for nanoparticle developers to integrate this new mechanistic knowledge into their processes for designing nanoparticle properties to be used in therapy.

The study was a team effort between researchers at Mayo Clinic including Mayo authors Rochelle Arvizo, Ph.D., Sounik Saha, Ph.D., Michael Thompson, and Resham Bhattacharya, Ph.D.; and the University of Massachusetts at Amherst including Daniel Moyano and Vincent Rotello, Ph.D.

Full bibliographic information

Probing Novel Roles of the Mitochondrial Uniporter in Ovarian Cancer Cells Using Nanoparticles

Rochelle R. Arvizo,
Daniel F. Moyano,
Sounik Saha,
Michael A. Thompson,
Resham Bhattacharya,
Vincent M. Rotello,
Y S. Prakash and
Priyabrata Mukherjee*

Journal of Biological Chemistry, 10.1074/jbc.M112.435206
jbc.M112.435206.

####

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life.

For more information, please click here

Contacts:
Polly Gilgenbach

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project