Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > How Gold Nanoparticles Can Help Fight Ovarian Cancer

Abstract:
Positively charged gold nanoparticles are usually toxic to cells, but cancer cells somehow manage to avoid nanoparticle toxicity. Mayo Clinic researchers found out why and determined how to make the nanoparticles effective against ovarian cancer cells. The discovery is detailed in the current online issue of the Journal of Biological Chemistry.

How Gold Nanoparticles Can Help Fight Ovarian Cancer

Rochester, MN | Posted on May 21st, 2013

"This study identifies a novel mechanism that protects ovarian cancer cells by preventing the cell death or apoptosis which should occur when they encounter positively charged nanoparticles," say the senior authors of this study, Priyabrata Mukherjee, Ph.D., a Mayo Clinic molecular biologist, and Y. S. Prakash, M.D., Ph.D., a Mayo Clinic anesthesiologist and physiologist.

Why Cancer Cells Survived

Gold nanoparticles can have many medical uses, from imaging and aiding diagnoses to delivering therapies. In this case, using a special preparation to put positive ionic charges on the surface, the nanoparticle is intended to act as a targeted destructor of tumor cells while leaving healthy cells alone. The nanoparticles are supposed to kill cells by causing cellular calcium ion levels to increase. But researchers discovered that a regulatory protein in the mitochondria essentially buffers the rising calcium by transporting it into the mitochondria, thus subverting cell death. Cancer cells have an abundance of this transporter and may thus be protected from nanoparticle toxicity.

The research team discovered that if they inhibit calcium uptake into the mitochondria, sufficient cellular stress builds up, making the gold nanoparticles more effective in destroying cancer cells.

The researchers say that understanding how mitochondrial transport mechanisms work will help in the design of targeted therapies against cancer. They called for nanoparticle developers to integrate this new mechanistic knowledge into their processes for designing nanoparticle properties to be used in therapy.

The study was a team effort between researchers at Mayo Clinic including Mayo authors Rochelle Arvizo, Ph.D., Sounik Saha, Ph.D., Michael Thompson, and Resham Bhattacharya, Ph.D.; and the University of Massachusetts at Amherst including Daniel Moyano and Vincent Rotello, Ph.D.

Full bibliographic information

Probing Novel Roles of the Mitochondrial Uniporter in Ovarian Cancer Cells Using Nanoparticles

Rochelle R. Arvizo,
Daniel F. Moyano,
Sounik Saha,
Michael A. Thompson,
Resham Bhattacharya,
Vincent M. Rotello,
Y S. Prakash and
Priyabrata Mukherjee*

Journal of Biological Chemistry, 10.1074/jbc.M112.435206
jbc.M112.435206.

####

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life.

For more information, please click here

Contacts:
Polly Gilgenbach

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Nanomedicine

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Together, nanotechnology and genetic interference may tackle 'untreatable' brain tumors: Tel Aviv University researchers' groundbreaking strategy stops brain tumor cell proliferation with targeted nanoparticles February 24th, 2015

Discoveries

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Announcements

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE