Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > MU Researchers Develop Radioactive Nanoparticles that Target Cancer Cells: This is an early step toward developing therapies for metastasized cancers, MU scientist says

Michael Lewis is an associate professor of oncology in the MU College of Veterinary Medicine.
Michael Lewis is an associate professor of oncology in the MU College of Veterinary Medicine.

Abstract:
Cancers of all types become most deadly when they metastasize and spread tumors throughout the body. Once cancer has reached this stage, it becomes very difficult for doctors to locate and treat the numerous tumors that can develop. Now, researchers at the University of Missouri have found a way to create radioactive nanoparticles that target lymphoma tumor cells wherever they may be in the body. Michael Lewis, an associate professor of oncology in the MU College of Veterinary Medicine, says being able to target secondary tumors is vital to successfully treating patients with progressive cancers.

MU Researchers Develop Radioactive Nanoparticles that Target Cancer Cells: This is an early step toward developing therapies for metastasized cancers, MU scientist says

Columbia, MO | Posted on May 21st, 2013

"Depending on the type of cancer, primary tumors usually are not the cause of death for cancer patients," Lewis said. "If a cancer metastasizes, or spreads creating hard-to-find tumors, it often becomes fatal. Having a way to identify and shrink these secondary tumors is of utmost importance when fighting to save people with these diseases."

In an effort to find a way to locate and kill secondary tumors, Lewis, in collaboration with J. David Robertson, director of research at the MU Research Reactor and professor of chemistry in the College of Arts and Science, have successfully created nanoparticles made of a radioactive form of the element lutetium. The MU scientists then covered the lutetium nanoparticles with gold shells and attached targeting agents.

In previous research, Lewis has already proven the effectiveness of similar targeting agents in mice and dogs suffering from tumors. In that research, the targeting agents were attached to single radioactive atoms that were introduced into the bodies of animals with cancer. The targeting agents were able to seek out the tumors existing within the animals, which were then revealed through radio-imaging of those animals.

In their current research, the MU scientists have shown the targeting agents can deliver the new radioactive lutetium nanoparticles to lymphoma tumor cells without attaching to and damaging healthy cells in the process. Robertson says this is an important step toward developing therapies for lymphoma and other advanced-stage cancers.

"The ability to deliver multiple radioactive atoms to individual cancer cells should greatly increase our ability to selectively kill these cells," Robertson said. "We are very optimistic about the synergy of combining the targeting strategy developed in Dr. Lewis's lab with our work on new radioactive nanoparticles."

Lewis has been invited to present his research at the City of Hope National Medical Center this June in Duarte, Calif.

This study is an example of the collaborative research taking place in the One Health, One Medicine area of Mizzou Advantage. The early-stage results of this research are promising. If additional studies, including animal studies, are successful within the next few years, the researchers will request permission from the federal government to begin human drug development. After this status has been granted, Lewis and Robertson may conduct human clinical trials with the hope of developing new treatments.

Lewis also is a principal investigator in the Research Service at the Harry S. Truman Memorial Veterans' Hospital. This research was supported by awards from the National Cancer Institute and the Department of Veterans Affairs as well as resources made available by Department of Veterans Affairs through use of facilities at the Harry S. Truman Memorial Veterans' Hospital in Columbia, Mo.

####

For more information, please click here

Contacts:
Nathan Hurst

573-882-6217

Copyright © University of Missouri-Columbia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Nanomedicine

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Military

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Two sensors in one: Nanoparticles that enable both MRI and fluorescent imaging could monitor cancer, other diseases November 18th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE