Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > New Nanopore Sensor Simplifies Analysis of Methylated DNA

Abstract:
DNA methylation, the addition of a methyl group to specific locations on a DNA strand, plays a critical role in determining which genes are active in a cell at any given time. It plays an important role in embryonic development, cell growth and reproduction, and many diseases, including cancer. Now, researchers collaborating at the Mayo Clinic and the University of Illinois in Urbana-Champaign have developed a novel single molecule test for detecting DNA methylation that should greatly simplify and advance the study of this important genomic process.

New Nanopore Sensor Simplifies Analysis of Methylated DNA

Bethesda, MD | Posted on May 20th, 2013

The details of this new test appear in a paper published in the journal Scientific Reports. This study was led by George Vasmatzis, co-leader of the Mayo Clinic's Biomarker Discovery Program in the Center for Individualized Medicine, and Rashid Bashir, co-principal investigator of the Midwest Cancer Nanotechnology Training Center at the University of Illinois, part of the National Cancer Institute's Alliance for Nanotechnology in Cancer.

The new method relies on solid-state nanopores, nanometer-sized holes created using standard semiconductor processing technologies in membranes made of a particular type of insulating material known as a dielectric. Electrical signals from the dielectric change in specific patterns when molecules, such as DNA pass through the nanopore. In this case, the collaborating teams labeled methylated regions of DNA with a specific methyl DNA binding protein known as MBD1.Whenever the protein-labeled region of DNA passes through a nanopore, the electrical current changes by a factor of three compared to when unlabeled regions of DNA pass through the pore, an easily observed change.

"While nanopores have been studied for genomic sequencing and screening analysis, this new assay can potentially circumvent the need for some of the current processes in evaluating epigenetics-related diseases," says Dr. Vasmatzis. He says the assay could eliminate the need for bisulfite conversion of DNA, fluorescent labeling, and polymerase chain reaction (PCR), the standard method for detecting methylated DNA. While this method is useful, its limitation is that it requires large quantities of DNA.

In its current form, this new technique can detect single instances of DNA methylation with high fidelity and determine the total number of methylation sites per DNA molecule. According to Dr. Bashir, "The next step in this research is to increase the spatial resolution by incorporating thinner membranes and by integrating the same preparation steps." Such improvements would then enable researchers to create high-resolution methylation maps that would be useful for characterizing so-called epigenetic diseases, including cancer.

The investigators note that "cancer-specific methylated DNA from most tumor types are known to be present in biopsy specimens and in patient serum at very low concentrations. A rapid, accurate, and amplification free assay to detect these biomarkers from minute sample volumes could prove invaluable in the early detection of disease, monitoring disease progression, and prognosis. With continued development, solid-state nanopores could meet this unmet technological and clinical need."

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View full paper - "Detection and quantification of methylation in DNA using solid-state nanopores."

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

Weird quantum effects stretch across hundreds of miles July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

Nanomedicine

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

Sensors

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics July 18th, 2016

UNIST engineers octopus-inspired smart adhesive pads July 15th, 2016

Announcements

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Energy

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic