Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Artificial Forest for Solar Water-Splitting: Berkeley Lab Researchers Report First Fully Integrated Artificial Photosynthesis Nanosystem

Schematic shows TiO2 nanowires (blue) grown on the upper half of a Si nanowire (gray) and the two absorbing different regions of the solar spectrum. Insets display photoexcited electron−hole pairs separated at the semiconductor-electrolyte interface to carry out water splitting with the help of co-catalysts (yellow and gray dots).
Schematic shows TiO2 nanowires (blue) grown on the upper half of a Si nanowire (gray) and the two absorbing different regions of the solar spectrum. Insets display photoexcited electron−hole pairs separated at the semiconductor-electrolyte interface to carry out water splitting with the help of co-catalysts (yellow and gray dots).

Abstract:
In the wake of the sobering news that atmospheric carbon dioxide is now at its highest level in at least three million years, an important advance in the race to develop carbon-neutral renewable energy sources has been achieved. Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have reported the first fully integrated nanosystem for artificial photosynthesis. While "artificial leaf" is the popular term for such a system, the key to this success was an "artificial forest."

Artificial Forest for Solar Water-Splitting: Berkeley Lab Researchers Report First Fully Integrated Artificial Photosynthesis Nanosystem

Berkeley, CA | Posted on May 17th, 2013

"Similar to the chloroplasts in green plants that carry out photosynthesis, our artificial photosynthetic system is composed of two semiconductor light absorbers, an interfacial layer for charge transport, and spatially separated co-catalysts," says Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, who led this research. "To facilitate solar water- splitting in our system, we synthesized tree-like nanowire heterostructures, consisting of silicon trunks and titanium oxide branches. Visually, arrays of these nanostructures very much resemble an artificial forest."

Yang, who also holds appointments with the University of California Berkeley's Chemistry Department and Department of Materials Science and Engineering, is the corresponding author of a paper describing this research in the journal NANO Letters. The paper is titled "A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting." Co-authors are Chong Liu, Jinyao Tang, Hao Ming Chen and Bin Liu.

Solar technologies are the ideal solutions for carbon-neutral renewable energy - there's enough energy in one hour's worth of global sunlight to meet all human needs for a year. Artificial photosynthesis, in which solar energy is directly converted into chemical fuels, is regarded as one of the most promising of solar technologies. A major challenge for artificial photosynthesis is to produce hydrogen cheaply enough to compete with fossil fuels. Meeting this challenge requires an integrated system that can efficiently absorb sunlight and produce charge-carriers to drive separate water reduction and oxidation half-reactions.

"In natural photosynthesis the energy of absorbed sunlight produces energized charge-carriers that execute chemical reactions in separate regions of the chloroplast," Yang says. "We've integrated our nanowire nanoscale heterostructure into a functional system that mimics the integration in chloroplasts and provides a conceptual blueprint for better solar-to-fuel conversion efficiencies in the future."

When sunlight is absorbed by pigment molecules in a chloroplast, an energized electron is generated that moves from molecule to molecule through a transport chain until ultimately it drives the conversion of carbon dioxide into carbohydrate sugars. This electron transport chain is called a "Z-scheme" because the pattern of movement resembles the letter Z on its side. Yang and his colleagues also use a Z-scheme in their system only they deploy two Earth abundant and stable semiconductors - silicon and titanium oxide - loaded with co-catalysts and with an ohmic contact inserted between them. Silicon was used for the hydrogen-generating photocathode and titanium oxide for the oxygen-generating photoanode. The tree-like architecture was used to maximize the system's performance. Like trees in a real forest, the dense arrays of artificial nanowire trees suppress sunlight reflection and provide more surface area for fuel producing reactions.

"Upon illumination photo-excited electron−hole pairs are generated in silicon and titanium oxide, which absorb different regions of the solar spectrum," Yang says. "The photo-generated electrons in the silicon nanowires migrate to the surface and reduce protons to generate hydrogen while the photo-generated holes in the titanium oxide nanowires oxidize water to evolve oxygen molecules. The majority charge carriers from both semiconductors recombine at the ohmic contact, completing the relay of the Z-scheme, similar to that of natural photosynthesis."

Under simulated sunlight, this integrated nanowire-based artificial photosynthesis system achieved a 0.12-percent solar-to-fuel conversion efficiency. Although comparable to some natural photosynthetic conversion efficiencies, this rate will have to be substantially improved for commercial use. However, the modular design of this system allows for newly discovered individual components to be readily incorporated to improve its performance. For example, Yang notes that the photocurrent output from the system's silicon cathodes and titanium oxide anodes do not match, and that the lower photocurrent output from the anodes is limiting the system's overall performance.

"We have some good ideas to develop stable photoanodes with better performance than titanium oxide," Yang says. "We're confident that we will be able to replace titanium oxide anodes in the near future and push the energy conversion efficiency up into single digit percentages."

This research was supported by the DOE Office of Science.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

For more information, please click here

Contacts:
Lynn Yarris

510-486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more about the research of Peidong Yang go here:

Related News Press

Laboratories

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

News and information

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Discoveries

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

Nanoparticles Accumulate Quickly in Wetland Sediment: Aquatic food chains might be harmed by molecules "piggybacking" on carbon nanoparticles October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Energy

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

Nanobiotechnology

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Penn Team Studies Nanocrystals by Passing Them Through Tiny Pores September 26th, 2014

New NIH/DOE Grant for Life Science Studies at NSLS-II: Funding will support operation of three powerful experimental stations designed to reveal detailed structures of proteins, viruses, and more September 23rd, 2014

Solar/Photovoltaic

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Solar cell compound probed under pressure September 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE