Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DNA-Guided Assembly Yields Novel Ribbon-Like Nanostructures: Approach could be useful in fabricating new kinds of materials with engineered properties

DNA-tethered nanorods link up like rungs on a ribbonlike ladder—a new mechanism for linear self-assembly that may be unique to the nanoscale.
DNA-tethered nanorods link up like rungs on a ribbonlike ladder—a new mechanism for linear self-assembly that may be unique to the nanoscale.

Abstract:
Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have discovered that DNA "linker" strands coax nano-sized rods to line up in a way unlike any other spontaneous arrangement of rod-shaped objects. The arrangement-with the rods forming "rungs" on ladder-like ribbons linked by multiple DNA strands-results from the collective interactions of the flexible DNA tethers and may be unique to the nanoscale. The research, described in a paper published online in ACS Nano, a journal of the American Chemical Society, could result in the fabrication of new nanostructured materials with desired properties.

DNA-Guided Assembly Yields Novel Ribbon-Like Nanostructures: Approach could be useful in fabricating new kinds of materials with engineered properties

Upton, NY | Posted on May 16th, 2013

"This is a completely new mechanism of self-assembly that does not have direct analogs in the realm of molecular or microscale systems," said Brookhaven physicist Oleg Gang, lead author on the paper, who conducted the bulk of the research at the Lab's Center for Functional Nanomaterials (CFN, www.bnl.gov/cfn/).

Broad classes of rod-like objects, ranging from molecules to viruses, often exhibit typical liquid-crystal-like behavior, where the rods align with a directional dependence, sometimes with the aligned crystals forming two-dimensional planes over a given area. Rod shaped objects with strong directionality and attractive forces between their ends-resulting, for example, from polarized charge distribution-may also sometimes line up end-to-end forming linear one-dimensional chains.

Neither typical arrangement is found in the DNA-tethered nanorods.

"Our discovery shows that a qualitatively new regime emerges for nanoscale objects decorated with flexible molecular tethers of comparable sizes-a one-dimensional ladder-like linear arrangement that appears in the absence of end-to-end affinity among the rods," Gang said.

Alexei Tkachenko, the CFN scientist who developed the theory to explain the exceptional arrangement, elaborated: "Remarkably, the system has all three dimensions to live in, yet it chooses to form the linear, almost one-dimensional ribbons. It can be compared to how extra dimensions that are hypothesized by high-energy physicists become 'hidden,' so that we find ourselves in a 3-D world."

Tkachenko explains how the ladder-like alignment results from a fundamental symmetry breaking:

"Once a nanorod connects to another one side-by-side, it loses the cylindrical symmetry it had when it had free tethers all around. Then, the next nanorod will preferentially bind to another side of the first, where there are still DNA linkers available."

DNA as glue

Using synthetic DNA as a form of molecular glue to guide nanoparticle assembly has been a central approach of Gang's research at the CFN. His previous work has shown that strands of this molecule-better known for carrying the genetic code of living things-can pull nanoparticles together when strands bearing complementary sequences of nucleotide bases (known by the letters A, T, G, and C) are used as tethers, or inhibit binding when unmatched strands are used. Carefully controlling those attractive and inhibitory forces can lead to fine-tuned nanoscale engineering.

In the current study, the scientists used gold nanorods and single strands of DNA to explore arrangements made with complementary tethers attached to adjacent rods. They also examined the effects of using linker strands of varying lengths to serve as the tethering glue.

After mixing the various combinations, they studied the resulting arrangements using ultraviolet-visible spectroscopy at the CFN, and also with small-angle x-ray scattering at Brookhaven's National Synchrotron Light Source (NSLS, www.bnl.gov/ps/nsls/about-NSLS.asp). They also used techniques to "freeze" the action at various points during assembly and observed those static phases using scanning electron microscopy to get a better understanding of how the process progressed over time.

The various analysis methods confirmed the side-by-side arrangement of the nanorods arrayed like rungs on a ladder-like ribbon during the early stages of assembly, followed later by stacking of the ribbons and finally larger-scale three-dimensional aggregation due to the formation of DNA bridges between the ribbons.
This staged assembly process, called hierarchical, is reminiscent of self-assembly in many biological systems (for example, the linking of amino acids into chains followed by the subsequent folding of these chains to form functional proteins).

The stepwise nature of the assembly suggested to the team that the process could be stopped at the intermediate stages. Using "blocker" strands of DNA to bind up the remaining free tethers on the linear ribbon-like structures, they demonstrated their ability to prevent the later-stage interactions that form aggregate structures.

"Stopping the assembly process at the ladder-like ribbon stage could potentially be applied for the fabrication of linear structures with engineered properties," Gang said. "For example by controlling plasmonic or fluorescent properties-the materials' responses to light-we might be able to make nanoscale light concentrators or light guides, and be able to switch them on demand."

Additional authors on this study include: Stephanie Vial of CFN and the International Iberian Nanotechnology Laboratory in Braga, Portugal, and Dmytro Nykypanchuk, and Kevin Yager, all of CFN.

This research was funded by the DOE Office of Science (BES), which also provides operations support for the CFN and NSLS at Brookhaven Lab.

The Center for Functional Nanomaterials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the U.S. Department of Energy, Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. More information about the DOE NSRCs: science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers.

One of the world's most widely used scientific research facilities, the National Synchrotron Light Source (NSLS) is host each year to 2,400 researchers from more than 400 universities, laboratories, and companies. Research conducted at the NSLS has yielded advances in biology, physics, chemistry, geophysics, medicine, and materials science. More information about NSLS: www.bnl.gov/ps/nsls/About-NSLS.asp.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific paper:

Press releases on previous related work:

Switchable Nanostructures Made with DNA:

DNA-Based Assembly Line for Precision Nano-Cluster Construction:

Related News Press

News and information

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Imaging

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

JPK opens new expanded offices in Berlin to meet the growing demand for products worldwide January 28th, 2015

Pittcon News: Renishaw adds to the comprehensive imaging options available with its inVia confocal Raman microscope January 27th, 2015

Laboratories

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

New pathway to valleytronics January 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Self Assembly

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

Discoveries

Creating new materials with quantum effects for electronics January 29th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Announcements

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Discovery Channel taps Angstron Materials for segment featuring graphene advances January 29th, 2015

Asteroid Mining 101: A New Book by World-Renowned Expert Dr. John S. Lewis - Exclusive Sneak-Peek Opportunity for Book Reviewers and Media January 29th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Tools

Hiden Gas Analysers at PITTCON 2015 | Visit us on Booth No. 1127 January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Nanobiotechnology

Spider electro-combs its sticky nano-filaments January 28th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE