Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > RUB physicists let magnetic dipoles interact on the nanoscale for the first time: 'Of great technical interest for future hard disk drives'

Dipole chains: Photon emission electron micrograph of the magnetic state of the islands at 140 Kelvin. In the blue-coloured islands, the magnetic dipoles point upwards along the lattice, in the red-coloured islands downwards. White islands have a dipole orientation which is perpendicular to the red and blue-coloured islands. The micrograph taken at 140 K was recorded at BESSY II of the Helmholtz-Zentrum Berlin.

© modifiziert nach / modified from Physical Review Letters
Dipole chains: Photon emission electron micrograph of the magnetic state of the islands at 140 Kelvin. In the blue-coloured islands, the magnetic dipoles point upwards along the lattice, in the red-coloured islands downwards. White islands have a dipole orientation which is perpendicular to the red and blue-coloured islands. The micrograph taken at 140 K was recorded at BESSY II of the Helmholtz-Zentrum Berlin.

© modifiziert nach / modified from Physical Review Letters

Abstract:
Physicists at the Ruhr-Universität Bochum (RUB) have found out how tiny islands of magnetic material align themselves when sorted on a regular lattice - by measurements at BESSY II. Contrary to expectations, the north and south poles of the magnetic islands did not arrange themselves in a zigzag pattern, but in chains. "The understanding of the driving interactions is of great technological interest for future hard disk drives, which are composed of small magnetic islands", says Prof. Dr. Hartmut Zabel of the Chair of Experimental Physics / Solid State Physics at the RUB. Together with colleagues from the Helmholtz-Zentrum in Berlin, Bochum's researchers report in the journal "Physical Review Letters".

RUB physicists let magnetic dipoles interact on the nanoscale for the first time: 'Of great technical interest for future hard disk drives'

Bochum, Germany | Posted on May 15th, 2013

Complete chaos in the normal state

Many atoms behave like compass needles, that is, like little magnetic dipoles with a north and a south pole. If you put them close together in a crystal, all the dipoles should align themselves to each other, making the material magnetic. However, this is not the case. A magnetic material is only created when specific quantum mechanical forces are at work. Normally, the forces between the atomic dipoles are by far too weak to cause magnetic order. Moreover, even at low temperatures, the thermal energy causes so much movement of the dipoles that complete chaos is the result. "However, the fundamental question remains of how magnetic dipoles would align themselves if the force between them was big enough", Prof. Zabel explains the research project.

Square lattice of magnetic islands

To investigate this, the researchers used lithographic methods to cut circular islands of a mere 150 nanometers in diameter from a thin magnetic layer. They arranged these in a regular square lattice. Each island contained about a million atomic dipoles. The forces between two islands were thus stronger by a factor of a million than that between two single atoms. If you leave these dipoles to their own resources, at low temperatures you can observe the arrangement that results exclusively from the interaction between the dipoles. They assume the most favourable pattern in terms of energy, the so-called ground state. The islands serve as a model for the behaviour of atomic dipoles.

Magnetic microscopy

The electron synchrotron BESSY II at the Helmholtz-Zentrum in Berlin is home to a special microscope, the photon emission electron microscope, with which the RUB physicists made the arrangement of the magnetic dipole islands visible. Using circularly polarised synchrotron light (X-ray photons), the photons stimulate specific electrons. These provide information on the orientation of the dipoles in the islands. The experiments were carried out at low temperatures so that the thermal movement could not interfere with the orientation of the dipoles.

Dipoles arrange themselves in chains

The magnetic dipoles formed chains, i.e. the north pole of one island pointed to the south pole of the next island. "This result was surprising", says Zabel. In the lattice, each dipole island has four neighbours to which it could align itself. You cannot tell in advance in which direction the north pole will ultimately point. "In fact, you would expect a zigzag arrangement", says the Bochum physicist. Based on the chain pattern observed in the experiment, the researchers showed that higher order interactions determine how the magnetisation was oriented. Not only dipolar, but also quadrupolar and octopolar interactions play a role. This means that a magnetic island exerts forces on four or eight neighbours at the same time.

Magnetic islands in the hard drives of the future

In future, hard disks will be made up of tiny magnetic islands (bit pattern). Each magnetic island will form a storage unit which can represent the bit states "0" and "1" - encoded through the orientation of the dipole. For a functioning computer, you need a configuration in which the dipole islands interact as little as possible and can thus assume the states "0" and "1"independently of each other. For the technical application, a precise understanding of the driving interactions between magnetic islands is therefore crucial.

###

Funding

The German Research Foundation (DFG) supported the work in Bochum within the Collaborative Research Centre (SFB) 491 „Magnetic hetero-structures: spin structures and spin transport"; BESSY II at the Helmholtz-Zentrum Berlin is supported by the Federal Ministry of Education and Research (BMBF).

Bibliographic record

M. Ewerlin, D. Demirbas, F. Brüssing, O. Petracic, A.A. Ünal, S. Valencia, F. Kronast, H. Zabel (2013): Magnetic Dipole and Higher Pole Interaction on a Square Lattice, Physical Review Letters, DOI: 10.1103/PhysRevLett.110.177209

Editor: Dr. Julia Weiler

####

For more information, please click here

Contacts:
Prof. Dr. Hartmut Zabel
Chair of Experimental Physics / Solid State Physics at the Ruhr-Universität
44780 Bochum, Germany

Copyright © Ruhr-University Bochum

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Imaging

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Silver nanoparticles take spectroscopy to new dimension: A new way of organizing nanostructures has boosted Raman signals by a hundred thousand times to better identify and characterize different molecules January 2nd, 2018

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

Physics

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Memory Technology

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Leti Breakthroughs Point Way to Significant Improvements in SoC Memories December 6th, 2017

Discoveries

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Announcements

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Tools

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project