Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Furnace accelerator startup develops anti-fogging technology

After one hour and 19 minutes, there is no fog on the area of the visor where VitreOx has been applied.
After one hour and 19 minutes, there is no fog on the area of the visor where VitreOx has been applied.

Abstract:
Early-stage nanotech company SiO2 Nanotech has begun beta testing commercial applications of its anti-fogging technology for corporate partners. The new technology, which was developed from patented research conducted in the lab of Nicole Herbots, professor emerita in the ASU Department of Physics, can be used on a variety of different surfaces, including glass and plastics.

Furnace accelerator startup develops anti-fogging technology

Tempe, AZ | Posted on May 7th, 2013

SiO2 Nanotech is part of the first cohort of the Furnace Technology Transfer Accelerator, an innovative startup accelerator designed to form, incubate and launch new companies created from intellectual property and patents developed at universities and research institutions. The Arizona-based startup's objective is to integrate its patented nanotechnologies into specific manufacturing or fabrication lines.

One of the company's nanotechnologies, a proprietary anti-fogging technology called VitreOx, controls the fogging that occurs on surfaces as a result of condensation. Although the technology was originally developed to eliminate fogging on intraocular lenses during eye surgery, the company is now developing beta products that integrate the technology for a number of corporate partners in a variety of industries.

"Our focus right now is to finalize a number of beta products for our corporate clients," said CEO and co-founder Clarizza Watson. "We are very excited about our products and are looking forward to commercialization."

The fog-control technology has drawn interest from corporate clients because of the patented method for manipulating moisture on surfaces to maintain a clear field of vision. The technology controls the behavior of water droplets by forming a 2-D layer on a surface, resulting in a clear field of vision. Initial tests have shown the treatment lasts not just hours or days but for the life of the product on select surfaces.

Currently commercialization development for SiO2 Nanotech includes the areas of vision protection for athletes in sports such as football, scuba diving, skiing and snowboarding as well as the eyewear and automotive sectors. This application of VitreOx, called VitreSport, will be the initial focus of commercialization until FDA approval is achieved for the medical application. Other potential market verticals include vision safety gear for occupations such as construction and laboratory work.

Prototype development is currently taking place at the Center for Entrepreneurial Innovation, a community-based business incubator located at GateWay Community College in Phoenix. Initially SiO2 Nanotech will produce prototypes of vision-protection products for several major corporations, including sporting goods manufacturers.

SiO2 Nanotech is one of 10 startups in the first cohort of the Furnace Technology Transfer Accelerator's Arizona Furnace accelerator, which provides seed funding, office space and access to top industry mentors in order to commercialize discoveries made in Arizona laboratories. Arizona Furnace is a statewide public-private partnership among the Arizona Commerce Authority, BioAccel, Arizona State University, Northern Arizona University, University of Arizona, Thunderbird School of Global Management, Arizona Technology Enterprises and Dignity Health Arizona.

SiO2 Nanotech and the other Arizona Furnace companies will debut their products at the first-ever Arizona Furnace Demo Day June 5 at ASU SkySong.

####

For more information, please click here

Contacts:
Molly Brush

Office of Knowledge Enterprise Development

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Discoveries

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Materials/Metamaterials

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Patents/IP/Tech Transfer/Licensing

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

System creates on-demand 'nanotube forests,' has potential industry applications April 20th, 2016

Smaller. Cheaper. Better. Iron nitride transformers developed at Sandia could boost energy storage options March 28th, 2016

Correction: Solar fuels: Protective layer for the 'artificial leaf' March 22nd, 2016

Events/Classes

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Introducing the RE標ORK Bio-inspired Robotics Summit in Berlin April 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic