Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers develop unique method for creating uniform nanoparticles

Micrograph showing array of atoms and tetrahedral subunits in a single icosahedral Pt particle
Micrograph showing array of atoms and tetrahedral subunits in a single icosahedral Pt particle

Abstract:
University of Illinois researchers have developed a new way to produce highly uniform nanocrystals used for both fundamental and applied nanotechnology projects.

Researchers develop unique method for creating uniform nanoparticles

Urbana, IL | Posted on May 6th, 2013

"We have developed a unique approach for the synthesis of highly uniform icosahedral nanoparticles made of platinum (Pt)," explained Hong Yang, a professor of chemical and biomolecular engineering at the University of Illinois at Urbana-Champaign. "This is important both in fundamental studies—nanoscience and nanotechnology—and in applied sciences such as high performance fuel cell catalysts."

Yang's research group focuses on the synthesis and understanding structure-property relationship of nanostructured materials for applications in energy, catalysis, and biotechnology. Its paper, "Highly Uniform Platinum Icosahedra Made by the Hot Injection-Assisted GRAILS Method," was published this week in Nano Letters.

"Although polyhedral nanostructures, such as a cube, tetrahedron, octahedron, cuboctahedron, and even icosahedron, have been synthesized for several noble metals, uniform Pt icosahedra do not form readily and are rarely made," stated Wei Zhou, a visiting scholar with Yang's research group and the paper's first author.

An icosahedron crystal is a polyhedron with 20 identical equilateral triangular faces, 30 edges and 12 vertices. According to Yang, icosahedral shaped crystals can improve the catalytic activity in oxygen reduction reaction partly because of the surface strain.

"The key reaction step to improve the activity of oxygen electrode catalysts in the hydrogen fuel cell is to optimize the bond strength between Pt and absorbed oxygen-containing intermediate species," Yang said. "This allows the rapid production of water and let the intermediate react and leave the surface quickly so the catalyst site can be used again."

"Unlike many other forms of metal nanoparticles, an icosahedral nanocrystal is not a single crystal, but has many twin (defect) boundaries within this shape. Previous simulation data suggest that it is unstable for Pt nanoparticles to exist in this shape at about >1-2 nm and, indeed, it is uncommon for Pt nanoparticles to have this morphology." Highly uniform Pt icosahedral nanocrystals with an edge length of 8.8 nm were synthesized by Yang's research group. They were made from platinum acetylacetonate in dodecylamine and with small amount of oleic acid using a hot injection-assisted GRAILS (gas reducing agent in liquid solution) approach. In the GRAILS approach, the inclusion of CO gas greatly facilitates the formation of well-defined shapes.

"Our results showed that the key factors for the shape control include fast nucleation, kinetically controlled growth, and protection from oxidation by air," Zhou added. By adjusting these key parameters, Pt hyper-branched rods, cubes, and octapods were also obtained.

"We are currently studying why this shape is formed in our systems and how we can use this principle to produce other unusual and potentially useful Pt and its alloy nanoparticles," Yang noted. "The high purity (>95%) of the products provides the ideal model materials for studying the structure/morphology-property relationships. Such mechanistic understanding is valuable for the design of advanced, high performance metal and metal alloy catalysts."

This work was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Hong Yang
Department of Chemical and Biomolecular Engineering
217/244-6730


Writer:
Rick Kubetz
Engineering Communications Office
University of Illinois at Urbana-Champaign
217/244-7716

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Chemistry

Chemical cages: New technique advances synthetic biology February 10th, 2016

Graphene decharging and molecular shielding February 8th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Discoveries

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Canadian Scientists Develop Innovative Protein Test for Zika February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Materials/Metamaterials

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

Making sense of metallic glass February 9th, 2016

Announcements

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Energy

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

February 4th, 2016

Fuel Cells

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Teijin to Participate in Nano Tech 2016 January 21st, 2016

Fuel cell advance: Research team reports success with low-cost nickel-based catalyst January 18th, 2016

Production of Graphene Oxide Nanosheets to Economize Fuel Cells January 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic