Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers develop unique method for creating uniform nanoparticles

Micrograph showing array of atoms and tetrahedral subunits in a single icosahedral Pt particle
Micrograph showing array of atoms and tetrahedral subunits in a single icosahedral Pt particle

Abstract:
University of Illinois researchers have developed a new way to produce highly uniform nanocrystals used for both fundamental and applied nanotechnology projects.

Researchers develop unique method for creating uniform nanoparticles

Urbana, IL | Posted on May 6th, 2013

"We have developed a unique approach for the synthesis of highly uniform icosahedral nanoparticles made of platinum (Pt)," explained Hong Yang, a professor of chemical and biomolecular engineering at the University of Illinois at Urbana-Champaign. "This is important both in fundamental studies—nanoscience and nanotechnology—and in applied sciences such as high performance fuel cell catalysts."

Yang's research group focuses on the synthesis and understanding structure-property relationship of nanostructured materials for applications in energy, catalysis, and biotechnology. Its paper, "Highly Uniform Platinum Icosahedra Made by the Hot Injection-Assisted GRAILS Method," was published this week in Nano Letters.

"Although polyhedral nanostructures, such as a cube, tetrahedron, octahedron, cuboctahedron, and even icosahedron, have been synthesized for several noble metals, uniform Pt icosahedra do not form readily and are rarely made," stated Wei Zhou, a visiting scholar with Yang's research group and the paper's first author.

An icosahedron crystal is a polyhedron with 20 identical equilateral triangular faces, 30 edges and 12 vertices. According to Yang, icosahedral shaped crystals can improve the catalytic activity in oxygen reduction reaction partly because of the surface strain.

"The key reaction step to improve the activity of oxygen electrode catalysts in the hydrogen fuel cell is to optimize the bond strength between Pt and absorbed oxygen-containing intermediate species," Yang said. "This allows the rapid production of water and let the intermediate react and leave the surface quickly so the catalyst site can be used again."

"Unlike many other forms of metal nanoparticles, an icosahedral nanocrystal is not a single crystal, but has many twin (defect) boundaries within this shape. Previous simulation data suggest that it is unstable for Pt nanoparticles to exist in this shape at about >1-2 nm and, indeed, it is uncommon for Pt nanoparticles to have this morphology." Highly uniform Pt icosahedral nanocrystals with an edge length of 8.8 nm were synthesized by Yang's research group. They were made from platinum acetylacetonate in dodecylamine and with small amount of oleic acid using a hot injection-assisted GRAILS (gas reducing agent in liquid solution) approach. In the GRAILS approach, the inclusion of CO gas greatly facilitates the formation of well-defined shapes.

"Our results showed that the key factors for the shape control include fast nucleation, kinetically controlled growth, and protection from oxidation by air," Zhou added. By adjusting these key parameters, Pt hyper-branched rods, cubes, and octapods were also obtained.

"We are currently studying why this shape is formed in our systems and how we can use this principle to produce other unusual and potentially useful Pt and its alloy nanoparticles," Yang noted. "The high purity (>95%) of the products provides the ideal model materials for studying the structure/morphology-property relationships. Such mechanistic understanding is valuable for the design of advanced, high performance metal and metal alloy catalysts."

This work was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Hong Yang
Department of Chemical and Biomolecular Engineering
217/244-6730


Writer:
Rick Kubetz
Engineering Communications Office
University of Illinois at Urbana-Champaign
217/244-7716

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Chemistry

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Discoveries

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Materials/Metamaterials

Production of Biocompatible Polymers in Iran October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Polymeric Scaffold Recreates Bladder Tissue October 27th, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Energy

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

Fuel Cells

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Researchers Pump Up Oil Accumulation in Plant Leaves: Method could greatly boost energy content of crops grown for fuel October 8th, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE