Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > How graphene and friends could harness the Sunís energy

Abstract:
Combining wonder material graphene with other stunning one-atom thick materials could create the next generation of solar cells and optoelectronic devices, scientists have revealed.

How graphene and friends could harness the Sunís energy

Manchester, UK | Posted on May 2nd, 2013

University of Manchester and National University of Singapore researchers have shown how building multi-layered heterostructures in a three-dimensional stack can produce an exciting physical phenomenon exploring new electronic devices.

The breakthrough, published in Science, could lead to electric energy that runs entire buildings generated by sunlight absorbed by its exposed walls; the energy can be used at will to change the transparency and reflectivity of fixtures and windows depending on environmental conditions, such as temperature and brightness.

The isolation of graphene, by University of Manchester Nobel Laureates Professor Andre Geim and Professor Kostya Novoselov in 2004, led to the discovery of the whole new family of one-atom-thick materials.

Graphene is the world's thinnest, strongest and most conductive material, and has the potential to revolutionise a huge number of diverse applications; from smartphones and ultrafast broadband to drug delivery and computer chips.

Collectively, such 2D crystals demonstrate a vast range of superlative properties: from conductive to insulating, from opaque to transparent. Every new layer in these stacks adds exciting new functions, so the heterostructures are ideal for creating novel, multifunctional devices.

One plus one is greater than two - the combinations of 2D crystals allow researchers to achieve functionality not available from any of the individual materials.

The Manchester and Singapore researchers expanded the functionality of these heterostructures to optoelectronics and photonics. By combining graphene with monolayers of transition metal dichalcogenides (TMDC), the researchers were able to created extremely sensitive and efficient photovoltaic devices. Such devices could potentially be used as ultrasensitive photodetectors or very efficient solar cells.

In these devices, layers of TMDC were sandwiched between two layers of graphene, combining the exciting properties of both 2D crystals. TMDC layers act as very efficient light absorbers and graphene as a transparent conductive layer. This allows for further integration of such photovoltaic devices into more complex, more multifunctional heterostructures.

Professor Novoselov said: "We are excited about the new physics and new opportunities which are brought to us by heterostructures based on 2D atomic crystals. The library of available 2D crystals is already quite rich, covering a large parameter space.

"Such photoactive heterostructures add yet new possibilities, and pave the road for new types of experiments. As we create more and more complex heterostructures, so the functionalities of the devices will become richer, entering the realm of multifunctional devices."

University of Manchester researcher and lead author Dr Liam Britnell added: "It was impressive how quickly we passed from the idea of such photosensitive heterostructures to the working device. It worked practically from the very beginning and even the most unoptimised structures showed very respectable characteristics"

Professor Antonio Castro Neto, Director of the Graphene Research Centre at the National University of Singapore added: "We were able to identify the ideal combination of materials: very photosensitive TMDC and optically transparent and conductive graphene, which collectively create a very efficient photovoltaic device.

"We are sure that as we research more into the area of 2D atomic crystals we will be able to identify more of such complimentary materials and create more complex heterostructures with multiple functionalities. This is really an open field and we will explore it."

Dr Cinzia Casiraghi, from The University of Manchester, added: "Photosensitive heterostructures would open a way for other heterostructures with new functionalities. Also, in future we plan for cheaper and more efficient heterostructure for photovoltaic applications."
Notes for editors

The paper, Strong light matter interactions in heterostructures of atomically thin films, by L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto and K. S. Novoselov, is available on request from the Press Office.

####

For more information, please click here

Contacts:
Daniel Cochlin
Graphene Communication and Marketing Manager
The University of Manchester
0161 275 8382

Twitter: @UoMGraphene

K. Dass
Senior Corporate Communications Manager
NUS Faculty of Science
Email:
Contact: 65 65164027

Copyright © Universitiy of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Graphene

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Graphenea opens US branch October 16th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

Discoveries

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Solar/Photovoltaic

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Advancing thin film research with nanostructured AZO: Innovnanoís unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE