Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Solar-powered nanofilters pump remove antibiotics to clean contaminated water

Using the mechanism bacteria use to shrug off powerful antibiotics, scientists have developed solar-powered nanofilters that remove antibiotics from lakes and rivers twice as efficiently as the best existing technology.

Credit:American Chemical Society
Using the mechanism bacteria use to shrug off powerful antibiotics, scientists have developed solar-powered nanofilters that remove antibiotics from lakes and rivers twice as efficiently as the best existing technology.

Credit:American Chemical Society

Abstract:
Using the same devious mechanism that enables some bacteria to shrug off powerful antibiotics, scientists have developed solar-powered nanofilters that remove antibiotics from the water in lakes and rivers twice as efficiently as the best existing technology. Their report appears in ACS' journal Nano Letters.

Solar-powered nanofilters pump remove antibiotics to clean contaminated water

Washington, DC | Posted on May 1st, 2013

David Wendell and Vikram Kapoor explain that antibiotics from toilets and other sources find their way into lakes and rivers, with traces appearing in 80 percent of waterways. Those antibiotics foster emergence of new antibiotic-resistant bacteria, while harming beneficial microbes in ways that can degrade aquatic environments and food chains. Filters containing activated carbon can remove antibiotics from effluent at municipal sewage treatment plants, before its release into waterways. But activated carbon is far from perfect. So the scientists looked for a better technology.

They describe development and successful laboratory testing of capsule-like "vesicles" containing the very mechanism that enables bacteria to survive doses of antibiotics. This system pumps antibiotics out of bacterial cells before any damage can occur. Wendell and Kapoor turned it around, however, so that the system pumps antibiotics into the vesicles. That way, they can be collected and recycled or shipped for disposal. In addition to the pump, the vesicles contain a propulsion system driven by sunlight. The pump system could be adapted to clean hormones, heavy metals and other undesirable materials from water, the scientists state.

####

About American Chemical Society (ACS)
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C. and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society contact

Follow us: Twitter Facebook

For more information, please click here

Contacts:
Michael Bernstein

202-872-6042

David Wendell, Ph.D.
School of Energy, Environmental, Biological and Medical Engineering
University of Cincinnati
2901 Woodside Drive
705 Engineering Research Center
Cincinnati, Ohio 45221

Copyright © American Chemical Society (ACS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Vacuum Ultraviolet Lamp of the Future Created in Japan: First Solid-State Vacuum UV Phosphor, Described in APL-Materials, Promises Smaller, Safer, Longer Lasting, Low Power Lamps for Industrial Applications April 22nd, 2014

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

Discoveries

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Vacuum Ultraviolet Lamp of the Future Created in Japan: First Solid-State Vacuum UV Phosphor, Described in APL-Materials, Promises Smaller, Safer, Longer Lasting, Low Power Lamps for Industrial Applications April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Announcements

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Vacuum Ultraviolet Lamp of the Future Created in Japan: First Solid-State Vacuum UV Phosphor, Described in APL-Materials, Promises Smaller, Safer, Longer Lasting, Low Power Lamps for Industrial Applications April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Water

Thinnest feasible membrane produced April 17th, 2014

Trees go high-tech: process turns cellulose into energy storage devices April 7th, 2014

Dais Analytic Wins SBIR Grant: Dais Analytic Receives US Army Small Business Innovation Research Grant to Further Its Demonstrated Successes in Cleaning Most Forms of Wastewater March 28th, 2014

University of Waterloo Engineering to Showcase Student Design March 14th, 2014

Alliances/Partnerships/Distributorships

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

ASM International Repositions Brand and Introduces New Logo; Looks to Future of Materials Science Innovation: New logo celebrates organizationís history and provides fresh elements for future growth April 21st, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Peer Reviewed and Approved for Science by the the Washington Academy of Sciences April 3rd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE