Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Solar-powered nanofilters pump remove antibiotics to clean contaminated water

Using the mechanism bacteria use to shrug off powerful antibiotics, scientists have developed solar-powered nanofilters that remove antibiotics from lakes and rivers twice as efficiently as the best existing technology.

Credit:American Chemical Society
Using the mechanism bacteria use to shrug off powerful antibiotics, scientists have developed solar-powered nanofilters that remove antibiotics from lakes and rivers twice as efficiently as the best existing technology.

Credit:American Chemical Society

Abstract:
Using the same devious mechanism that enables some bacteria to shrug off powerful antibiotics, scientists have developed solar-powered nanofilters that remove antibiotics from the water in lakes and rivers twice as efficiently as the best existing technology. Their report appears in ACS' journal Nano Letters.

Solar-powered nanofilters pump remove antibiotics to clean contaminated water

Washington, DC | Posted on May 1st, 2013

David Wendell and Vikram Kapoor explain that antibiotics from toilets and other sources find their way into lakes and rivers, with traces appearing in 80 percent of waterways. Those antibiotics foster emergence of new antibiotic-resistant bacteria, while harming beneficial microbes in ways that can degrade aquatic environments and food chains. Filters containing activated carbon can remove antibiotics from effluent at municipal sewage treatment plants, before its release into waterways. But activated carbon is far from perfect. So the scientists looked for a better technology.

They describe development and successful laboratory testing of capsule-like "vesicles" containing the very mechanism that enables bacteria to survive doses of antibiotics. This system pumps antibiotics out of bacterial cells before any damage can occur. Wendell and Kapoor turned it around, however, so that the system pumps antibiotics into the vesicles. That way, they can be collected and recycled or shipped for disposal. In addition to the pump, the vesicles contain a propulsion system driven by sunlight. The pump system could be adapted to clean hormones, heavy metals and other undesirable materials from water, the scientists state.

####

About American Chemical Society (ACS)
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C. and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society contact

Follow us: Twitter Facebook

For more information, please click here

Contacts:
Michael Bernstein

202-872-6042

David Wendell, Ph.D.
School of Energy, Environmental, Biological and Medical Engineering
University of Cincinnati
2901 Woodside Drive
705 Engineering Research Center
Cincinnati, Ohio 45221

Copyright © American Chemical Society (ACS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

Discoveries

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

Announcements

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

Water

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Bacteria-coated nanofiber electrodes clean pollutants in wastewater July 1st, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Plasmonics could bring sustainable society, desalination tech June 2nd, 2017

Alliances/Trade associations/Partnerships/Distributorships

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

Phenom-World selects Deben to supply a tensile stage as an accessory to their range of desktop SEMs August 29th, 2017

Oxford Instruments Plasma Technology announces a new partner in Korea August 15th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project