Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > One step closer to a quantum computer

Abstract:
Professor Weimin Chen and his colleagues at Linköping University, in cooperation with German and American researchers, have succeeded in both initializing and reading nuclear spins, relevant to qubits for quantum computers, at room temperature. The results have just been published in the renowned journal Nature Communications.

One step closer to a quantum computer

Linköping, Sweden | Posted on April 30th, 2013

A quantum computer is controlled by the laws of quantum physics; it promises to perform complicated calculations, or search large amounts of data, at a speed that exceeds by far those that today's fastest supercomputers are capable of.

"You could say that a quantum computer can think several thoughts simultaneously, while a traditional computer thinks one thought at a time," says Weimin Chen, professor in the Division of Functional Electronic Materials at the Department of Physics, Chemistry and Biology at LiU, and one of the main authors of the article in Nature Communications.

A traditional computer stores, processes and sends all information in the form of bits, which can have a value of 1 or 0. But in the world of quantum physics, at the nano- and atomic level, other rules prevail and a bit in a quantum computer - a qubit - can have any value between 1 and 0. A spin-based qubit makes use of the fact that electrons and atomic nuclei rotate around their own axes - they have a spin. They can rotate both clockwise and counterclockwise (equivalent to 1 and 0), and in both directions simultaneously (a mix of 1 and 0) - something that is completely unthinkable in the traditional, "classical" world.

An atomic nucleus consists of both protons and neutrons, and the advantage of using the nuclear spin as a qubit is that the nucleus is well protected, and nearly impervious to unwanted electromagnetic disturbance, which is a condition for keeping the sensitive information in the qubit intact.

The first step in building a quantum computer is to assign each qubit a well-defined value, either 1 or 0. Starting, or initiating, the spin-based qubits then requires all the atomic nuclei to spin in the same direction, either ‘up' or ‘down' (clockwise or counterclockwise). The most common method for polarising nuclear spin is called dynamic nuclear polarisation; this means that the electrons' spin simply influences the nucleus to spin in the same direction. The method requires strongly spin polarised electrons and functions superbly at lower temperatures. Dynamic nuclear polarisation via conduction electrons has, however, not yet been demonstrated at room temperature - which is crucial for the method to be useful in practice for the development of quantum computers. The main problem is that the spin orientation in the electrons can easily be lost at room temperature, since it is sensitive to disruptions from its surroundings.

Linköping University researchers Yuttapoom Puttisong, Xingjun Wang, Irina Buyanova and Weimin Chen, together with their German and American colleagues, have now discovered a way of getting around this problem.

Back in 2009, Chen and his research group presented a spin filter that works at room temperature; the filter lets through electrons that have the desired spin direction and screens out the others.

With the help of the spin filter, they have now succeeded in producing a flow of free electrons with a given spin in a material - in this case GaNAs (gallium nitrogen arsenide). The spin polarisation is so strong that it creates a strong polarisation of the nuclear spin in extra Ga atoms that are added as defects in the material - and this takes place at room temperature. This is the first time that strong nuclear spin polarisation of a defect atom in a solid is demonstrated at room temperature by spin-polarised conduction electrons.

"We prove experimentally that the measurable magnetic field from the nuclei, as well as the strong polarisation of the nuclear spins in the material at room temperature, comes from the dynamic polarisation of the nuclear spin in the extra added Ga atoms," says Chen.

The researchers have also shown that the polarisation of the nuclear spin happens very quickly - potentially in less than a nanosecond (one-billionth of a second).

The method proposed also has the advantage of making use of free electrons. This makes it possible to control the polarisation of the spin in the nucleus electrically; in this way the information lying in the spin can both be initiated and read.

####

For more information, please click here

Contacts:
Weimin Chen

46-013-281-795-460

Professor Weimin Chen

+46(0)13-28 17 95
+46(0)70-512 13 88

Writer:
Monica Westman Svenselius 2013-04-26

Copyright © Linköping University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article: Efficient room-temperature nuclear spin hyperpolarization of a defect atom in a semiconductor by Y. Puttisong, X. J. Wang, I.A. Buyanova, L. Geelhaar, H. Riechert, A.J. Ptak, C.W. Tu, and W.M. Chen. Nature Communications. 4: 1751 doi:10.1038/ncomms2776 (2013).

LiU News 2012: Important advance for spintronics

Nature Materials: Room-temperature defect-engineered spin filter based on a non-magnetic semiconductor:

Division of Functional Electronic Materials

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Physics

Graphene under pressure August 26th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Spintronics

Swapping substrates improves edges of graphene nanoribbons: Using inert boron nitride instead of silica creates precise zigzag edges in monolayer graphene August 2nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time July 20th, 2016

A new spin on reality July 15th, 2016

Quantum Computing

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits August 9th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Record-breaking logic gate 'another important milestone' on road to quantum computers August 7th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic