Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > One step closer to a quantum computer

Abstract:
Professor Weimin Chen and his colleagues at Linköping University, in cooperation with German and American researchers, have succeeded in both initializing and reading nuclear spins, relevant to qubits for quantum computers, at room temperature. The results have just been published in the renowned journal Nature Communications.

One step closer to a quantum computer

Linköping, Sweden | Posted on April 30th, 2013

A quantum computer is controlled by the laws of quantum physics; it promises to perform complicated calculations, or search large amounts of data, at a speed that exceeds by far those that today's fastest supercomputers are capable of.

"You could say that a quantum computer can think several thoughts simultaneously, while a traditional computer thinks one thought at a time," says Weimin Chen, professor in the Division of Functional Electronic Materials at the Department of Physics, Chemistry and Biology at LiU, and one of the main authors of the article in Nature Communications.

A traditional computer stores, processes and sends all information in the form of bits, which can have a value of 1 or 0. But in the world of quantum physics, at the nano- and atomic level, other rules prevail and a bit in a quantum computer - a qubit - can have any value between 1 and 0. A spin-based qubit makes use of the fact that electrons and atomic nuclei rotate around their own axes - they have a spin. They can rotate both clockwise and counterclockwise (equivalent to 1 and 0), and in both directions simultaneously (a mix of 1 and 0) - something that is completely unthinkable in the traditional, "classical" world.

An atomic nucleus consists of both protons and neutrons, and the advantage of using the nuclear spin as a qubit is that the nucleus is well protected, and nearly impervious to unwanted electromagnetic disturbance, which is a condition for keeping the sensitive information in the qubit intact.

The first step in building a quantum computer is to assign each qubit a well-defined value, either 1 or 0. Starting, or initiating, the spin-based qubits then requires all the atomic nuclei to spin in the same direction, either ‘up' or ‘down' (clockwise or counterclockwise). The most common method for polarising nuclear spin is called dynamic nuclear polarisation; this means that the electrons' spin simply influences the nucleus to spin in the same direction. The method requires strongly spin polarised electrons and functions superbly at lower temperatures. Dynamic nuclear polarisation via conduction electrons has, however, not yet been demonstrated at room temperature - which is crucial for the method to be useful in practice for the development of quantum computers. The main problem is that the spin orientation in the electrons can easily be lost at room temperature, since it is sensitive to disruptions from its surroundings.

Linköping University researchers Yuttapoom Puttisong, Xingjun Wang, Irina Buyanova and Weimin Chen, together with their German and American colleagues, have now discovered a way of getting around this problem.

Back in 2009, Chen and his research group presented a spin filter that works at room temperature; the filter lets through electrons that have the desired spin direction and screens out the others.

With the help of the spin filter, they have now succeeded in producing a flow of free electrons with a given spin in a material - in this case GaNAs (gallium nitrogen arsenide). The spin polarisation is so strong that it creates a strong polarisation of the nuclear spin in extra Ga atoms that are added as defects in the material - and this takes place at room temperature. This is the first time that strong nuclear spin polarisation of a defect atom in a solid is demonstrated at room temperature by spin-polarised conduction electrons.

"We prove experimentally that the measurable magnetic field from the nuclei, as well as the strong polarisation of the nuclear spins in the material at room temperature, comes from the dynamic polarisation of the nuclear spin in the extra added Ga atoms," says Chen.

The researchers have also shown that the polarisation of the nuclear spin happens very quickly - potentially in less than a nanosecond (one-billionth of a second).

The method proposed also has the advantage of making use of free electrons. This makes it possible to control the polarisation of the spin in the nucleus electrically; in this way the information lying in the spin can both be initiated and read.

####

For more information, please click here

Contacts:
Weimin Chen

46-013-281-795-460

Professor Weimin Chen

+46(0)13-28 17 95
+46(0)70-512 13 88

Writer:
Monica Westman Svenselius 2013-04-26

Copyright © Linköping University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article: Efficient room-temperature nuclear spin hyperpolarization of a defect atom in a semiconductor by Y. Puttisong, X. J. Wang, I.A. Buyanova, L. Geelhaar, H. Riechert, A.J. Ptak, C.W. Tu, and W.M. Chen. Nature Communications. 4: 1751 doi:10.1038/ncomms2776 (2013).

LiU News 2012: Important advance for spintronics

Nature Materials: Room-temperature defect-engineered spin filter based on a non-magnetic semiconductor:

Division of Functional Electronic Materials

Related News Press

News and information

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Physics

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor July 15th, 2014

Weizmann Institute scientists take another step down the long road toward quantum computers July 14th, 2014

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Spintronics

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Harnessing magnetic vortices for making nanoscale antennas: Scientists explore ways to synchronize spins for more powerful nanoscale electronic devices April 30th, 2014

Could Diamonds Be A Computer’s Best Friend? Landmark experiment reveals the precious gem’s potential in computing March 24th, 2014

Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices March 21st, 2014

Quantum Computing

Harris & Harris Group Portfolio Company D-Wave Systems Closes a $28.4 Million Financing July 14th, 2014

Weizmann Institute scientists take another step down the long road toward quantum computers July 14th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

From pencil marks to quantum computers: Introducing graphene July 5th, 2014

Discoveries

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Research partnerships

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE