Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Platinum Replaced with Manganese Oxide Nanocatalyst for Water Oxidization

Abstract:
Iranian researchers from the Institute for Advanced Studies in Basic Sciences of Zanjan in cooperation with their counterparts from the Russian and American universities succeeded in the synthesis of a catalyst that is able to oxidize water as a green fuel.

Platinum Replaced with Manganese Oxide Nanocatalyst for Water Oxidization

Tehran, Iran | Posted on April 30th, 2013

In addition to its reasonable price, this compound can be compared to platinum for water oxidation.

The researchers synthesized a type of manganese oxide that is able to oxidize water in acidic environment, and it reacts like the expensive platinum in this reaction. The cheap electrons obtained in this reaction can be used in the reduction of various components. The reduction of carbon dioxide to methane or the reduction of nitrogen to ammonium are the examples of this application.

"A kind of manganese oxide nanolayer structure is formed when the metallic ions of calcium enter the manganese structure," Dr. Mohammad Mehdi Najafpour, one of the researchers of the project, stated, and added, "It provides a large surface for water oxidation, and it severely activates this process due to its nanometric properties."

Results of this research and the produced component may lead to the production of cost-effective materials that are used in water decomposition in future. On the other hand, if solar energy can be converted to electricity with high efficiency by using novel solar cells, the energy is transferred to the catalysts and it is used in water decomposition. In other words, hydrogen can be obtained as a green fuel by using the cost-effective solar energy, appropriate catalysts, and water.

Results of the research have been published in Dalton Transactions, 2013, issue 14, pp. 5058-5091.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Discoveries

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Announcements

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Solar/Photovoltaic

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project