Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Movement of pyrrole molecules defy 'classical' physics

Abstract:
New research shows that movement of the ring-like molecule pyrrole over a metal surface runs counter to the centuries-old laws of 'classical' physics that govern our everyday world.

Movement of pyrrole molecules defy 'classical' physics

Cambridge, UK | Posted on April 28th, 2013

Using uniquely sensitive experimental techniques, scientists have found that laws of quantum physics - believed primarily to influence at only sub-atomic levels - can actually impact on a molecular level.

Researchers at Cambridge's Chemistry Department and Cavendish Laboratory say they have evidence that, in the case of pyrrole, quantum laws affecting the internal motions of the molecule change the "very nature of the energy landscape" - making this 'quantum motion' essential to understanding the distribution of the whole molecule.

The study, a collaboration between scientists from Cambridge and Rutgers universities, appeared in the German chemistry journal Angewandte Chemie earlier this month.

A pyrrole molecule's centre consists of a "flat pentagram" of five atoms, four carbon and one nitrogen. Each of these atoms has an additional hydrogen atom attached, sticking out like spokes.

Following experiments performed by Barbara Lechner at the Cavendish Laboratory to determine the energy required for movement of pyrrole across a copper surface, the team discovered a discrepancy that led them down a 'quantum' road to an unusual discovery.

In previous work on simpler molecules, the scientists were able to accurately calculate the 'activation barrier' - the energy required to loosen a molecule's bond to a surface, allowing movement - using 'density functional theory', a method that treats the electrons which bind the atoms according to quantum mechanics but, crucially, deals with atomic nuclei using a 'classical' physics approach.

Surprisingly, with pyrrole the predicted 'activation barriers' were way out, with calculations "less than a third of the measured value". After much head scratching, puzzled scientists turned to a purely quantum phenomenon called 'zero-point energy'.

In classical physics, an object losing energy can continue to do so until it can be thought of as sitting perfectly still. In the quantum world, this is never the case: everything always retains some form of residual - even undetectable - energy, known as 'zero-point energy'.

While 'zero-point energy' is well known to be associated with motion of the atoms contained in molecules, it was previously believed that such tiny amounts of energy simply don't affect the molecule as a whole to any measurable extent, unless the molecule broke apart.

But now, the researchers have discovered that the "quantum nature" of the molecule's internal motion actually does affect the molecule as a whole as it moves across the surface, defying the 'classical' laws that it's simply too big to feel quantum effects.

'Zero-point energy' moving within a pyrrole molecule is unexpectedly sensitive to the exact site occupied by the molecule on the surface. In moving from one site to another, the 'activation energy' must include a sizeable contribution due to the change in the quantum 'zero-point energy'.

Scientists believe the effect is particularly noticeable in the case of pyrrole because the 'activation energy' needed for diffusion is particularly small, but that many other similar molecules ought to show the same kind of behavior.

"Understanding the nature of molecular diffusion on metal surfaces is of great current interest, due to efforts to manufacture two-dimensional networks of ring-like molecules for use in optical, electronic or spintronic devices," said Dr Stephen Jenkins, who heads up the Surface Science Group in Cambridge's Department of Chemistry.

"The balance between the activation energy and the energy barrier that sticks the molecules to the surface is critical in determining which networks are able to form under different conditions."

Credits:

Stephen Jenkins is head of the Chemistry Department's Surface Science Group; Marco Sacchi is the post-doc in that group who did the calculations.

Bill Allison and John Ellis lead the Surface Science section of the Surfaces, Microstructure and Fracture Group at the Cavendish; Holly Hedgeland was a post-doc in that group, who started a lot of the experimental work on diffusion of aromatic molecules; Barbara Lechner was the student who took the lead on the experimental work for this specific system.

Jane Hinch is a collaborator from Rutgers University, involved in the experimental work and its interpretation

####

For more information, please click here

Contacts:
Stephen Jenkins

44-012-233-36502

Copyright © University of Cambridge

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Quantum nanoscience

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project