Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scientists provide 'new spin' on emerging quantum technologies

Images illustrate how collective spin excitations behave under the effect of the spin-orbit field, with and without external magnetic field. © 2012 American Physical Society
Images illustrate how collective spin excitations behave under the effect of the spin-orbit field, with and without external magnetic field.

© 2012 American Physical Society

Abstract:
An international team of scientists has shed new light on a fundamental area of physics which could have important implications for future electronic devices and the transfer of information at the quantum level.

Scientists provide 'new spin' on emerging quantum technologies

Heslington, UK | Posted on April 23rd, 2013

The electrical currents currently used to power electronic devices are generated by a flow of charges. However, emerging quantum technologies such as spin-electronics, make use of both charge and another intrinsic property of electrons - their spin - to transfer and process signals and information.

The experimental and theoretical work, carried out by researchers from York's Department of Physics, the Institute of Nanoscience in Paris and the University of Missouri-Columbia, USA, could have important implications for spintronics and quantum information technologies.

The team looked at semiconductors' structures - the base of current electronic devices and of many spintronic device proposals - and the problems created by internal fields known as spin-orbit fields. In general, these tend to act differently on each electronic spin, causing a phenomenon referred to as 'spin-decoherence'. This means that the electronic spins will behave in a way which cannot be completely controlled or predicted, which has important implications for device functionalities.

To address this problem, the scientists looked at semiconductor structures called 'quantum wells' where the spins can be excited in a collective, coherent way by using lasers and light scattering.

They demonstrated that these collective spin excitations possess a macroscopic spin of quantum nature. In other words, the electrons and their spins act as a single entity making them less susceptible to spin orbit fields, so decoherence is highly suppressed.

The theoretical work was led by Dr Irene D'Amico from York's Department of Physics, and Carsten Ullrich, an Associate Professor from Missouri-Columbia's

Department of Physics. The project began with their prediction about the effect of spin Coulomb drag on collective spin excitations, and developed into a much larger international project spanning over three years, which was funded in the UK by a Royal Society grant, with additional funding from the Engineering and Physical Sciences Research Council (EPSRC).

Dr D'Amico said: "This work has developed into a strong international collaboration which has greatly improved our understanding at fundamental level of the role of many-body interactions on the behaviour of electron spins.

"By combining experimental and theoretical work, we were able to demonstrate that through many-body interactions, a macroscopic collection of spins can behave as a single entity with a single macroscopic quantum spin, making this much less susceptible to decoherence. In the future, it may be possible to use these excitations as signals to transport or elaborate information at the quantum level."

After reporting their results in the journal Physical Review Letters last year, the team of scientists confirmed and extended the results by considering different materials and type of excitation. The second set of experiments, were recently reported in Physical Review B (Rapid Communication) and highlighted by the Journal as an 'Editor's Suggestion'.

Dr Florent Perez, who led the experimental work with Florent Baboux, at the CNRS/Université Paris VI, says the results strongly suggest that the quantum nature of the macroscopic spin is universal to collective spin excitations in conductive systems.

He said: "The collaboration with Irene D'Amico and Carsten Ullrich has been particularly powerful to disentangle the puzzle of our data. In our first joint work we constructed an interpretation of the phenomenon which was confirmed in a second investigation carried out on a different system. This paved the way for a universality of the effect."

####

For more information, please click here

Contacts:
Caron Lett

44-019-043-22029

Copyright © University of York

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Spintronics

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Penn researchers discover new chiral property of silicon, with photonic applications July 25th, 2015

Spintronics just got faster July 20th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Chip Technology

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Quantum Computing

A little light interaction leaves quantum physicists beaming August 25th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

New optical chip lights up the race for quantum computer August 14th, 2015

Quantum computing advance locates neutral atoms August 12th, 2015

Discoveries

Successful boron-doping of graphene nanoribbon August 27th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Announcements

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Quantum nanoscience

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic