Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientists provide 'new spin' on emerging quantum technologies

Images illustrate how collective spin excitations behave under the effect of the spin-orbit field, with and without external magnetic field. © 2012 American Physical Society
Images illustrate how collective spin excitations behave under the effect of the spin-orbit field, with and without external magnetic field.

© 2012 American Physical Society

Abstract:
An international team of scientists has shed new light on a fundamental area of physics which could have important implications for future electronic devices and the transfer of information at the quantum level.

Scientists provide 'new spin' on emerging quantum technologies

Heslington, UK | Posted on April 23rd, 2013

The electrical currents currently used to power electronic devices are generated by a flow of charges. However, emerging quantum technologies such as spin-electronics, make use of both charge and another intrinsic property of electrons - their spin - to transfer and process signals and information.

The experimental and theoretical work, carried out by researchers from York's Department of Physics, the Institute of Nanoscience in Paris and the University of Missouri-Columbia, USA, could have important implications for spintronics and quantum information technologies.

The team looked at semiconductors' structures - the base of current electronic devices and of many spintronic device proposals - and the problems created by internal fields known as spin-orbit fields. In general, these tend to act differently on each electronic spin, causing a phenomenon referred to as 'spin-decoherence'. This means that the electronic spins will behave in a way which cannot be completely controlled or predicted, which has important implications for device functionalities.

To address this problem, the scientists looked at semiconductor structures called 'quantum wells' where the spins can be excited in a collective, coherent way by using lasers and light scattering.

They demonstrated that these collective spin excitations possess a macroscopic spin of quantum nature. In other words, the electrons and their spins act as a single entity making them less susceptible to spin orbit fields, so decoherence is highly suppressed.

The theoretical work was led by Dr Irene D'Amico from York's Department of Physics, and Carsten Ullrich, an Associate Professor from Missouri-Columbia's

Department of Physics. The project began with their prediction about the effect of spin Coulomb drag on collective spin excitations, and developed into a much larger international project spanning over three years, which was funded in the UK by a Royal Society grant, with additional funding from the Engineering and Physical Sciences Research Council (EPSRC).

Dr D'Amico said: "This work has developed into a strong international collaboration which has greatly improved our understanding at fundamental level of the role of many-body interactions on the behaviour of electron spins.

"By combining experimental and theoretical work, we were able to demonstrate that through many-body interactions, a macroscopic collection of spins can behave as a single entity with a single macroscopic quantum spin, making this much less susceptible to decoherence. In the future, it may be possible to use these excitations as signals to transport or elaborate information at the quantum level."

After reporting their results in the journal Physical Review Letters last year, the team of scientists confirmed and extended the results by considering different materials and type of excitation. The second set of experiments, were recently reported in Physical Review B (Rapid Communication) and highlighted by the Journal as an 'Editor's Suggestion'.

Dr Florent Perez, who led the experimental work with Florent Baboux, at the CNRS/Université Paris VI, says the results strongly suggest that the quantum nature of the macroscopic spin is universal to collective spin excitations in conductive systems.

He said: "The collaboration with Irene D'Amico and Carsten Ullrich has been particularly powerful to disentangle the puzzle of our data. In our first joint work we constructed an interpretation of the phenomenon which was confirmed in a second investigation carried out on a different system. This paved the way for a universality of the effect."

####

For more information, please click here

Contacts:
Caron Lett

44-019-043-22029

Copyright © University of York

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Spintronics

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Pseudospin-driven spin relaxation mechanism in graphene November 11th, 2014

New Electron Spin Secrets Revealed November 10th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

Chip Technology

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Quantum Computing

Pseudospin-driven spin relaxation mechanism in graphene November 11th, 2014

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics November 11th, 2014

Noise in a microwave amplifier is limited by quantum particles of heat November 10th, 2014

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Quantum nanoscience

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Pseudospin-driven spin relaxation mechanism in graphene November 11th, 2014

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics November 11th, 2014

On-demand conductivity for graphene nanoribbons: Physicists from Uzbekistan and Germany have devised a theoretical model to tune the conductivity of graphene zigzag nanoribbons using ultra-short pulses November 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE