Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > University of Illinois researchers measure near-field behavior of semiconductor plasmonic microparticles: Nanometer-scale heating reveals surface plasmon resonance

Atomic force microscope image of plasmonic semiconductor microparticles.
Atomic force microscope image of plasmonic semiconductor microparticles.

Abstract:
Recent progress in the engineering of plasmonic structures has enabled new kinds of nanometer-scale optoelectronic devices as well as high-resolution optical sensing. But until now, there has been a lack of tools for measuring nanometer-scale behavior in plasmonic structures which are needed to understand device performance and to confirm theoretical models.

University of Illinois researchers measure near-field behavior of semiconductor plasmonic microparticles: Nanometer-scale heating reveals surface plasmon resonance

Urbana, IL | Posted on April 22nd, 2013

"For the first time, we have measured nanometer-scale infrared absorption in semiconductor plasmonic microparticles using a technique that combines atomic force microscopy with infrared spectroscopy," explained William P. King, an Abel Bliss Professor in the Department of Mechanical Science and Engineering (MechSE) at Illinois. "Atomic force microscope infrared spectroscopy allows us to directly observe the plasmonic behavior within microparticle infrared antennas."

The article describing the research, "Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy," appears in Applied Physics Letters.

"Highly doped semiconductors can serve as wavelength flexible plasmonic metals in the infrared," noted Daniel M. Wasserman, assistant professor of electrical and computer engineering at Illinois. "However, without the ability to visualize the optical response in the vicinity of the plasmonic particles, we can only infer the near-field behavior of the structures from their far-field response. What this work gives us is a clear window into the optical behavior of this new class of materials on a length scale much smaller than the wavelength of light."

The article compares near-field and far-field measurements with electromagnetic simulations to confirm the presence of localized plasmonic resonance. The article further reports high resolution maps of the spatial distribution of absorption within single plasmonic structures and variation across plasmonic arrays.

"The ability to measure near field behavior in plasmonic structures allows us to begin expanding our design parameters for plasmonic materials," commented Jonathan Felts, a MechSE graduate student. "Now that we can measure the optical behavior of individual features, we can start to think about designing and testing more complex optical materials."

The authors on the research are Jonathan Felts, Stephanie Law, Daniel M. Wasserman, and William P. King of the University of Illinois at Urbana-Champaign, along with Christopher M. Roberts and Viktor Podolskiy of the University of Massachusetts. The article is available online. This research was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
William P. King

217-244-3864

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

Imaging

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

News and information

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Chip Technology

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Graphene: Progress, not quantum leaps May 23rd, 2016

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Optical computing/Photonic computing

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Photon collisions: Photonic billiards might be the newest game! May 20th, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

How light is detected affects the atom that emits it: An experiment suggests it might be possible to control atoms entangled with the light they emit by manipulating detection May 15th, 2016

Discoveries

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Announcements

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Tools

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

Photonics/Optics/Lasers

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Photon collisions: Photonic billiards might be the newest game! May 20th, 2016

We’ll Leave the Lights On For You: Photonics advances allow us to be seen across the universe, with major implications for the search for extraterrestrial intelligence, says UC Santa Barbara physicist Philip Lubin - See more at: http://www.news.ucsb.edu/2016/016805/we-ll-leave-li May 17th, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

Research partnerships

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Mille-feuille-filter removes viruses from water May 19th, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

The CEA Announces Expanded Collaboration with Intel to Advance Cutting-edge Research and Innovation in Key Digital Areas May 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic