Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ultrafast technique unlocks design principles of quantum biology

University of Chicago researchers have created a synthetic compound that mimics the complex quantum dynamics observed in photosynthesis. The compound may enable fundamentally new routes to creative solar light harvesting technologies.

Credit: Graham Griffin
University of Chicago researchers have created a synthetic compound that mimics the complex quantum dynamics observed in photosynthesis. The compound may enable fundamentally new routes to creative solar light harvesting technologies.

Credit: Graham Griffin

Abstract:
University of Chicago researchers have created a synthetic compound that mimics the complex quantum dynamics observed in photosynthesis and may enable fundamentally new routes to creating solar-energy technologies. Engineering quantum effects into synthetic light-harvesting devices is not only possible, but also easier than anyone expected, the researchers report in the April 18 edition of Science Express.

Ultrafast technique unlocks design principles of quantum biology

Chicago, IL | Posted on April 21st, 2013

The researchers have engineered small molecules that support long-lived quantum coherences. Coherences are the macroscopically observable behavior of quantum superpositions. Superpositions are a fundamental quantum mechanical concept, exemplified by the classic Schrodinger's Cat thought experiment, in which a single quantum particle such as an electron occupies more than one state simultaneously.

Quantum effects are generally negligible in large, hot, disordered systems. Nevertheless, the recent ultrafast spectroscopy experiments in UChicago chemistry Prof. Greg Engel's laboratory have shown that quantum superpositions may play a role in the near perfect quantum efficiency of photosynthetic light harvesting, even at physiological temperatures.

Photosynthetic antennae - the proteins that organize chlorophylls and other light-absorbing molecules in plants and bacteria - support superpositions that survive for anomalously long times. Many researchers have proposed that organisms have evolved a means of protecting these superpositions. The result: improved efficiency in transferring energy from absorbed sunlight to the parts of the cell that convert solar energy to chemical energy. The newly reported results demonstrate that his particular manifestation of quantum mechanics can be engineered into man-made compounds.

The researchers modified fluorescein - the same molecule once used to dye the Chicago River green for St. Patrick's Day - and then linked different pairs of these dyes together using a rigid bridging structure. The resulting molecules were able to recreate the important properties of chlorophyll molecules in photosynthetic systems that cause coherences to persist for tens of femtoseconds at room temperature.

"That may not sound like a very long time - a femtosecond is a millionth of a billionth of a second," said study co-author Dugan Hayes, a UChicago graduate student in chemistry. "But the movement of excitations through these systems also occurs on this ultrafast timescale, meaning that these quantum superpositions can play an important role in energy transfer."

To detect evidence of long-lived superpositions, the researchers created a movie of energy flow in the molecules using highly engineered laboratories and state-of-the-art femtosecond laser systems. Three precisely controlled laser pulses are directed into the sample, causing it to emit an optical signal that is captured and directed into a camera.

By scanning the time delays between the arriving laser pulses, the researchers create a movie of energy flow in the system, encoded as a series two-dimensional spectra. Each two-dimensional spectrum is a single frame of the movie, and contains information about where energy resides in the system and what pathways it has followed to get there.

These movies show relaxation from high energy states toward lower energy states as time proceeds, as well as oscillating signals in very specific regions of the signal, or quantum beats. "Quantum beats are the signature of quantum coherence, arising from the interference between the different energetic states in the superposition, similar to the beating heard when two instruments that are slightly out of tune with each other try to play the same note," Hayes explained.

Computer simulations have shown that quantum coherences work in photosynthetic antennae to prevent excitations from getting trapped on their way to the reaction center, where the conversion to chemical energy begins. In one interpretation, as the excitation moves through the antenna, it remains in a superposition of all possible paths at once, making it inevitable that it proceeds down the proper path. "Until these coherences were observed in synthetic systems, it remained dubious that such a complex phenomenon could be recreated outside of nature," Hayes said.

####

For more information, please click here

Contacts:
Steve Koppes

773-702-8366

Copyright © University of Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Discoveries

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps ó todayís scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Announcements

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Energy

Yale researchersí technology turns wasted heat into power June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEIís QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Nanobiotechnology

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Solar/Photovoltaic

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

New generation of high-efficiency solar thermal absorbers developed June 20th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

Quantum nanoscience

CWRU physicists deploy magnetic vortex to control electron spin: Potential technology for quantum computing, keener sensors June 21st, 2016

Neutrons reveal unexpected magnetism in rare-earth alloy June 16th, 2016

Spintronics: Resetting the future of heat assisted magnetic recording June 15th, 2016

NIST's super quantum simulator 'entangles' hundreds of ions June 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic