Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Ultrafast technique unlocks design principles of quantum biology

University of Chicago researchers have created a synthetic compound that mimics the complex quantum dynamics observed in photosynthesis. The compound may enable fundamentally new routes to creative solar light harvesting technologies.

Credit: Graham Griffin
University of Chicago researchers have created a synthetic compound that mimics the complex quantum dynamics observed in photosynthesis. The compound may enable fundamentally new routes to creative solar light harvesting technologies.

Credit: Graham Griffin

Abstract:
University of Chicago researchers have created a synthetic compound that mimics the complex quantum dynamics observed in photosynthesis and may enable fundamentally new routes to creating solar-energy technologies. Engineering quantum effects into synthetic light-harvesting devices is not only possible, but also easier than anyone expected, the researchers report in the April 18 edition of Science Express.

Ultrafast technique unlocks design principles of quantum biology

Chicago, IL | Posted on April 21st, 2013

The researchers have engineered small molecules that support long-lived quantum coherences. Coherences are the macroscopically observable behavior of quantum superpositions. Superpositions are a fundamental quantum mechanical concept, exemplified by the classic Schrodinger's Cat thought experiment, in which a single quantum particle such as an electron occupies more than one state simultaneously.

Quantum effects are generally negligible in large, hot, disordered systems. Nevertheless, the recent ultrafast spectroscopy experiments in UChicago chemistry Prof. Greg Engel's laboratory have shown that quantum superpositions may play a role in the near perfect quantum efficiency of photosynthetic light harvesting, even at physiological temperatures.

Photosynthetic antennae - the proteins that organize chlorophylls and other light-absorbing molecules in plants and bacteria - support superpositions that survive for anomalously long times. Many researchers have proposed that organisms have evolved a means of protecting these superpositions. The result: improved efficiency in transferring energy from absorbed sunlight to the parts of the cell that convert solar energy to chemical energy. The newly reported results demonstrate that his particular manifestation of quantum mechanics can be engineered into man-made compounds.

The researchers modified fluorescein - the same molecule once used to dye the Chicago River green for St. Patrick's Day - and then linked different pairs of these dyes together using a rigid bridging structure. The resulting molecules were able to recreate the important properties of chlorophyll molecules in photosynthetic systems that cause coherences to persist for tens of femtoseconds at room temperature.

"That may not sound like a very long time - a femtosecond is a millionth of a billionth of a second," said study co-author Dugan Hayes, a UChicago graduate student in chemistry. "But the movement of excitations through these systems also occurs on this ultrafast timescale, meaning that these quantum superpositions can play an important role in energy transfer."

To detect evidence of long-lived superpositions, the researchers created a movie of energy flow in the molecules using highly engineered laboratories and state-of-the-art femtosecond laser systems. Three precisely controlled laser pulses are directed into the sample, causing it to emit an optical signal that is captured and directed into a camera.

By scanning the time delays between the arriving laser pulses, the researchers create a movie of energy flow in the system, encoded as a series two-dimensional spectra. Each two-dimensional spectrum is a single frame of the movie, and contains information about where energy resides in the system and what pathways it has followed to get there.

These movies show relaxation from high energy states toward lower energy states as time proceeds, as well as oscillating signals in very specific regions of the signal, or quantum beats. "Quantum beats are the signature of quantum coherence, arising from the interference between the different energetic states in the superposition, similar to the beating heard when two instruments that are slightly out of tune with each other try to play the same note," Hayes explained.

Computer simulations have shown that quantum coherences work in photosynthetic antennae to prevent excitations from getting trapped on their way to the reaction center, where the conversion to chemical energy begins. In one interpretation, as the excitation moves through the antenna, it remains in a superposition of all possible paths at once, making it inevitable that it proceeds down the proper path. "Until these coherences were observed in synthetic systems, it remained dubious that such a complex phenomenon could be recreated outside of nature," Hayes said.

####

For more information, please click here

Contacts:
Steve Koppes

773-702-8366

Copyright © University of Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Discoveries

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Announcements

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Energy

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells April 22nd, 2014

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

Nanoreporters tell 'sour' oil from 'sweet': Rice University's hydrogen sulfide nanoreporters gather intel on oil before pumping April 22nd, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Nanobiotechnology

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Solar/Photovoltaic

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells April 22nd, 2014

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Quantum nanoscience

A new key to unlocking the mysteries of physics? Quantum turbulence April 21st, 2014

Quantum manipulation: Filling the gap between quantum and classical world April 14th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Quantum Photon Properties Revealed in Another Particle—the Plasmon April 5th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE