Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SBU-Led Study Reveals Nanoparticles Found in Everyday Items Can Inhibit Fat Storage: Increase in gold nanoparticles can accelerate aging and wrinkling, slow wound healing, cause onset of diabetes

The team of researchers studying the effects of gold nanoparticles on the body, pictured from left to right (sitting) Marcia Simon, Tatsiana Mironava, (standing) Miriam Rafailovich and Michael Hadjiargyrou.
The team of researchers studying the effects of gold nanoparticles on the body, pictured from left to right (sitting) Marcia Simon, Tatsiana Mironava, (standing) Miriam Rafailovich and Michael Hadjiargyrou.

Abstract:
New research reveals that pure gold nanoparticles found in everyday items such as personal care products, as well as drug delivery, MRI contrast agents and solar cells can inhibit adipose (fat) storage and lead to accelerated aging and wrinkling, slowed wound healing and the onset of diabetes. The researchers, led by Tatsiana Mironava, a visiting assistant professor in the Department of Chemical and Molecular Engineering at Stony Brook University, detail their research, "Gold nanoparticles cellular toxicity and recovery: Adipose Derived Stromal cells," in the journal Nanotoxicology.

SBU-Led Study Reveals Nanoparticles Found in Everyday Items Can Inhibit Fat Storage: Increase in gold nanoparticles can accelerate aging and wrinkling, slow wound healing, cause onset of diabetes

Stony Brook, NY | Posted on April 19th, 2013

Together with co-author Dr. Marcia Simon, Professor of Oral Biology and Pathology at Stony Brook University, and Director of the University's Living Skin Bank, a world-class facility that has developed skin tissue for burn victims and various wound therapies, the researchers tested the impact of nanoparticles in vitro on multiple types of cells, including adipose (fat) tissue, to determine whether their basic functions were disrupted when exposed to very low doses of nanoparticles. Subcutaneous adipose tissue acts as insulation from heat and cold, functions as a reserve of nutrients, and is found around internal organs for padding, in yellow bone marrow and in breast tissue.

They discovered that the human adipose-derived stromal cells - a type of adult stem cells - were penetrated by the gold nanoparticles almost instantly and that the particles accumulated in the cells with no obvious pathway for elimination. The presence of the particles disrupted multiple cell functions, such as movement; replication (cell division); and collagen contraction; processes that are essential in wound healing.

According to the researchers, the most disturbing finding was that the particles interfered with genetic regulation, RNA expression and inhibited the ability to differentiate into mature adipocytes or fat cells. "Reductions caused by gold nanoparticles can result in systemic changes to the body," said Professor Mironava. "Since they have been considered inert and essentially harmless, it was assumed that pure gold nanoparticles would also be safe. Evidence to the contrary is beginning to emerge."

This study is also the first to demonstrate the impact of nanoparticles on adult stem cells, which are the cells our body uses for continual organ regeneration. It revealed that adipose derived stromal cells involved in regeneration of multiple organs, including skin, nerve, bone, and hair, ignored appropriate cues and failed to differentiate when exposed to nanoparticles. The presence of gold nanoparticles also reduced adiponectin, a protein involved in regulating glucose levels and fatty acid breakdown, which helps to regulate metabolism.

"We have learned that careful consideration and the choice of size, concentration and the duration of the clinical application of gold nanoparticles is warranted," said Professor Mironava. "The good news is that when the nanoparticles were removed, normal functions were eventually restored."

"Nanotechnology is continuing to be at the cutting edge of science research and has opened new doors in energy and materials science," said co-author, Miriam Rafailovich, PhD, Chief Scientist of the Advanced Energy Center and Distinguished Professor of Materials Science and Engineering at Stony Brook. "Progress comes with social responsibility and ensuring that new technologies are environmentally sustainable. These results are very relevant to achieving these goals."

The research, funded by the National Science Foundation Materials Research Science and Engineering Centers (MRSEC) and Polymer Programs, was a collaboration of Stony Brook University and New York State Stem Cell Science (NYSTEM). The paper was also co-authored by Michael Hadjiargyrou, Professor and Chairperson, Department of Life Sciences at New York Institute of Technology (NYIT) and former Professor in the Department of Biomedical Engineering at Stony Brook.

####

For more information, please click here

Contacts:
631.632.6310
Stony Brook University
310 Admin
Stony Brook, NY 11794-0701

Copyright © Stony Brook University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article - “Gold nanoparticles cellular toxicity and recovery: Adipose Derived Stromal cells,” in the journal Nanotoxicology:

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Nanomedicine

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Effective Nano-Micelles Designed in Iran to Treat Cancer May 20th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Environment

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Directa Plus in Barcelona to present the innovative project GEnIuS for oil spills clean-up activities: The company has created a graphene-based product for the remediation of water contaminated by oil and hydrocarbons May 21st, 2015

Nano-policing pollution May 13th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Safety-Nanoparticles/Risk management

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project