Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SBU-Led Study Reveals Nanoparticles Found in Everyday Items Can Inhibit Fat Storage: Increase in gold nanoparticles can accelerate aging and wrinkling, slow wound healing, cause onset of diabetes

The team of researchers studying the effects of gold nanoparticles on the body, pictured from left to right (sitting) Marcia Simon, Tatsiana Mironava, (standing) Miriam Rafailovich and Michael Hadjiargyrou.
The team of researchers studying the effects of gold nanoparticles on the body, pictured from left to right (sitting) Marcia Simon, Tatsiana Mironava, (standing) Miriam Rafailovich and Michael Hadjiargyrou.

Abstract:
New research reveals that pure gold nanoparticles found in everyday items such as personal care products, as well as drug delivery, MRI contrast agents and solar cells can inhibit adipose (fat) storage and lead to accelerated aging and wrinkling, slowed wound healing and the onset of diabetes. The researchers, led by Tatsiana Mironava, a visiting assistant professor in the Department of Chemical and Molecular Engineering at Stony Brook University, detail their research, "Gold nanoparticles cellular toxicity and recovery: Adipose Derived Stromal cells," in the journal Nanotoxicology.

SBU-Led Study Reveals Nanoparticles Found in Everyday Items Can Inhibit Fat Storage: Increase in gold nanoparticles can accelerate aging and wrinkling, slow wound healing, cause onset of diabetes

Stony Brook, NY | Posted on April 19th, 2013

Together with co-author Dr. Marcia Simon, Professor of Oral Biology and Pathology at Stony Brook University, and Director of the University's Living Skin Bank, a world-class facility that has developed skin tissue for burn victims and various wound therapies, the researchers tested the impact of nanoparticles in vitro on multiple types of cells, including adipose (fat) tissue, to determine whether their basic functions were disrupted when exposed to very low doses of nanoparticles. Subcutaneous adipose tissue acts as insulation from heat and cold, functions as a reserve of nutrients, and is found around internal organs for padding, in yellow bone marrow and in breast tissue.

They discovered that the human adipose-derived stromal cells - a type of adult stem cells - were penetrated by the gold nanoparticles almost instantly and that the particles accumulated in the cells with no obvious pathway for elimination. The presence of the particles disrupted multiple cell functions, such as movement; replication (cell division); and collagen contraction; processes that are essential in wound healing.

According to the researchers, the most disturbing finding was that the particles interfered with genetic regulation, RNA expression and inhibited the ability to differentiate into mature adipocytes or fat cells. "Reductions caused by gold nanoparticles can result in systemic changes to the body," said Professor Mironava. "Since they have been considered inert and essentially harmless, it was assumed that pure gold nanoparticles would also be safe. Evidence to the contrary is beginning to emerge."

This study is also the first to demonstrate the impact of nanoparticles on adult stem cells, which are the cells our body uses for continual organ regeneration. It revealed that adipose derived stromal cells involved in regeneration of multiple organs, including skin, nerve, bone, and hair, ignored appropriate cues and failed to differentiate when exposed to nanoparticles. The presence of gold nanoparticles also reduced adiponectin, a protein involved in regulating glucose levels and fatty acid breakdown, which helps to regulate metabolism.

"We have learned that careful consideration and the choice of size, concentration and the duration of the clinical application of gold nanoparticles is warranted," said Professor Mironava. "The good news is that when the nanoparticles were removed, normal functions were eventually restored."

"Nanotechnology is continuing to be at the cutting edge of science research and has opened new doors in energy and materials science," said co-author, Miriam Rafailovich, PhD, Chief Scientist of the Advanced Energy Center and Distinguished Professor of Materials Science and Engineering at Stony Brook. "Progress comes with social responsibility and ensuring that new technologies are environmentally sustainable. These results are very relevant to achieving these goals."

The research, funded by the National Science Foundation Materials Research Science and Engineering Centers (MRSEC) and Polymer Programs, was a collaboration of Stony Brook University and New York State Stem Cell Science (NYSTEM). The paper was also co-authored by Michael Hadjiargyrou, Professor and Chairperson, Department of Life Sciences at New York Institute of Technology (NYIT) and former Professor in the Department of Biomedical Engineering at Stony Brook.

####

For more information, please click here

Contacts:
631.632.6310
Stony Brook University
310 Admin
Stony Brook, NY 11794-0701

Copyright © Stony Brook University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article - “Gold nanoparticles cellular toxicity and recovery: Adipose Derived Stromal cells,” in the journal Nanotoxicology:

Related News Press

News and information

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanomedicine

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Discoveries

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Announcements

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Environment

Novel functionalized nanomaterials for CO2 capture May 10th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Los Alamos National Laboratory Expands Scope to Locus Technologies SaaS Contract: Los Alamos National Laboratory Adds Two New Applications to Locus SaaS Platform May 7th, 2016

Understanding tiny droplets can make for better weather forecasts: Climate change models also benefit from understanding fundamental thermodynamics of water droplets May 6th, 2016

Safety-Nanoparticles/Risk management

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

The impact of anti-odor clothing on the environment March 31st, 2016

Research partnerships

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Mille-feuille-filter removes viruses from water May 19th, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

The CEA Announces Expanded Collaboration with Intel to Advance Cutting-edge Research and Innovation in Key Digital Areas May 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic