Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Multilayer Laue Lenses Enable Studies of Nanostructures with Ultra-high Resolution

(a) Scanning electron microscope (SEM) image of the solid oxide fuel cell (SOFC) specimen adhered on a Si3Ni4 window with Pt welding. (b-d) are horizontal phase-gradient scanning x-ray microscope images obtained by differential intensity, moment analysis and Fourier-shift fitting algorithms, respectively. Artifacts and blurring effects can be seen in (b) and (c), as compared to (d).
(a) Scanning electron microscope (SEM) image of the solid oxide fuel cell (SOFC) specimen adhered on a Si3Ni4 window with Pt welding. (b-d) are horizontal phase-gradient scanning x-ray microscope images obtained by differential intensity, moment analysis and Fourier-shift fitting algorithms, respectively. Artifacts and blurring effects can be seen in (b) and (c), as compared to (d).

Abstract:
Microscopes have been a centerpiece of experimental science since at least the 16th century, providing a window into the material world at extraordinarily small scales. As the structures examined decrease in size - some measuring just billionths of a meter - capturing an x-ray image at high spatial resolution while retaining sufficient imaging contrast becomes more difficult.

Multilayer Laue Lenses Enable Studies of Nanostructures with Ultra-high Resolution

Upton, NY | Posted on April 18th, 2013

One method of addressing this challenge is scanning x-ray microscopy, which uses a highly focused x-ray beam to produce spatial images of a specimen. In keeping with the scientific mission of Brookhaven National Laboratory's National Synchrotron Light Source II (NSLS-II), an advanced nanofocusing optic dubbed multilayer Laue lens (MLL) is being developed by the optics fabrication group for nanoscale imaging. The development has progressed to a prototype MLL microscope (see 2011 publication in Optics Express 19, 15069-15076).

For nanostructures that absorb x-rays very slightly, however, viewing them via absorption contrast becomes infeasible. Although the phase contrast provides a good way to study such a transparent object, historically researchers have found it difficult, if not impossible, to obtain accurate phase information of an object using x-rays because a detector only measures intensity. In scanning x-ray microscopy, previous attempts have been made to obtain quantitative phase information of a specimen, but none has worked well with MLLs, sacrificing the high-resolution power they provide for phase imaging.

As a result of years of groundbreaking research, a team of researchers in the Hard X-ray Nanoprobe (HXN) group at NSLS-II has solved this problem, together with their collaborators from Argonne National Laboratory, University of Connecticut and Chosun University in Korea. This research is detailed in a paper published in Nature's Scientific Reports, February 19, 2013.

Brookhaven physicist Hanfei Yan, the paper's lead author, and his collaborators describe a new mathematical algorithm that clarifies, or "fits", the optical patterns that emerge from the scanning x-ray microscope, producing a quantitative phase image with far fewer artifacts and less blurring than existing methods. This novel technique pairs scanning x-ray microscopy with MLLs, fully exploiting its ultra-high resolution imaging capability for studies on nanostructures. When applied in a state-of-the-art light source like NSLS-II, a facility that will produce the brightest x-ray beams in the world, the nanofocusing power of MLLs will enable the study of nanostructures as small as 10 nm with an unprecedented level of precision.

The technique is so-called differential phase contrast imaging. Just as a beam of light "bends" when refracted by a prism, an x-ray beam can "bend" when refracted by a specimen. The characteristics of the specimen are then encoded in the emerging far field pattern, and by analyzing this pattern researchers are able to construct a quantitative phase image.

"Quantitative phase imaging at the nanoscale will enable us to examine the structural, compositional and possibly chemical state change of a specimen for which conventional contrast mechanism such as absorption and fluorescence imaging may not work," said Yan.

To verify the validity of this method, a solid oxide fuel cell (SOFC) anode sample composed of nickel and Yttria-stabilized zirconia cermet, a composite material made of ceramic and metallic elements, was investigated. When compared to images produced by conventional phase-imaging techniques, the superior image contrast of the method using an MLL microscope with a "fitting" algorithm is evident (see figure).

"The high sensitivity of the phase to structural and compositional variations makes this technique extremely powerful in correlating the electrode performance in SOFC," said Wilson Chu, a professor at University of Connecticut.

Currently, a next-generation MLL microscope with below 1-nm stability is under development, led by Evgeny Nazaretski, a co-author of the paper, and will be used as the workhorse at HXN beamline. "At NSLS-II, we will explore the full power of the MLL microscope and provide users not only a tool with high resolution, but also with new imaging capabilities," said Yong Chu, another co-author of the paper and also group leader of the HXN beamline.

Yan and his collaborators conducted the experiment at 26-ID of Advanced Photon Source at Argonne Lab, using a monochromatic x-ray beam with photon energy of 12 keV focused by a pair of multilayer Laue lenses placed orthogonally with respect to each other.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Angela Leroux-Lindsey

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Summary Slide (pdf)

Related News Press

News and information

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Laboratories

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Scientists Set Record Resolution for Drawing at the One-Nanometer Length Scale: An electron microscope-based lithography system for patterning materials at sizes as small as a single nanometer could be used to create and study materials with new properties May 1st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Discoveries

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Tools

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project