Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Multilayer Laue Lenses Enable Studies of Nanostructures with Ultra-high Resolution

(a) Scanning electron microscope (SEM) image of the solid oxide fuel cell (SOFC) specimen adhered on a Si3Ni4 window with Pt welding. (b-d) are horizontal phase-gradient scanning x-ray microscope images obtained by differential intensity, moment analysis and Fourier-shift fitting algorithms, respectively. Artifacts and blurring effects can be seen in (b) and (c), as compared to (d).
(a) Scanning electron microscope (SEM) image of the solid oxide fuel cell (SOFC) specimen adhered on a Si3Ni4 window with Pt welding. (b-d) are horizontal phase-gradient scanning x-ray microscope images obtained by differential intensity, moment analysis and Fourier-shift fitting algorithms, respectively. Artifacts and blurring effects can be seen in (b) and (c), as compared to (d).

Abstract:
Microscopes have been a centerpiece of experimental science since at least the 16th century, providing a window into the material world at extraordinarily small scales. As the structures examined decrease in size - some measuring just billionths of a meter - capturing an x-ray image at high spatial resolution while retaining sufficient imaging contrast becomes more difficult.

Multilayer Laue Lenses Enable Studies of Nanostructures with Ultra-high Resolution

Upton, NY | Posted on April 18th, 2013

One method of addressing this challenge is scanning x-ray microscopy, which uses a highly focused x-ray beam to produce spatial images of a specimen. In keeping with the scientific mission of Brookhaven National Laboratory's National Synchrotron Light Source II (NSLS-II), an advanced nanofocusing optic dubbed multilayer Laue lens (MLL) is being developed by the optics fabrication group for nanoscale imaging. The development has progressed to a prototype MLL microscope (see 2011 publication in Optics Express 19, 15069-15076).

For nanostructures that absorb x-rays very slightly, however, viewing them via absorption contrast becomes infeasible. Although the phase contrast provides a good way to study such a transparent object, historically researchers have found it difficult, if not impossible, to obtain accurate phase information of an object using x-rays because a detector only measures intensity. In scanning x-ray microscopy, previous attempts have been made to obtain quantitative phase information of a specimen, but none has worked well with MLLs, sacrificing the high-resolution power they provide for phase imaging.

As a result of years of groundbreaking research, a team of researchers in the Hard X-ray Nanoprobe (HXN) group at NSLS-II has solved this problem, together with their collaborators from Argonne National Laboratory, University of Connecticut and Chosun University in Korea. This research is detailed in a paper published in Nature's Scientific Reports, February 19, 2013.

Brookhaven physicist Hanfei Yan, the paper's lead author, and his collaborators describe a new mathematical algorithm that clarifies, or "fits", the optical patterns that emerge from the scanning x-ray microscope, producing a quantitative phase image with far fewer artifacts and less blurring than existing methods. This novel technique pairs scanning x-ray microscopy with MLLs, fully exploiting its ultra-high resolution imaging capability for studies on nanostructures. When applied in a state-of-the-art light source like NSLS-II, a facility that will produce the brightest x-ray beams in the world, the nanofocusing power of MLLs will enable the study of nanostructures as small as 10 nm with an unprecedented level of precision.

The technique is so-called differential phase contrast imaging. Just as a beam of light "bends" when refracted by a prism, an x-ray beam can "bend" when refracted by a specimen. The characteristics of the specimen are then encoded in the emerging far field pattern, and by analyzing this pattern researchers are able to construct a quantitative phase image.

"Quantitative phase imaging at the nanoscale will enable us to examine the structural, compositional and possibly chemical state change of a specimen for which conventional contrast mechanism such as absorption and fluorescence imaging may not work," said Yan.

To verify the validity of this method, a solid oxide fuel cell (SOFC) anode sample composed of nickel and Yttria-stabilized zirconia cermet, a composite material made of ceramic and metallic elements, was investigated. When compared to images produced by conventional phase-imaging techniques, the superior image contrast of the method using an MLL microscope with a "fitting" algorithm is evident (see figure).

"The high sensitivity of the phase to structural and compositional variations makes this technique extremely powerful in correlating the electrode performance in SOFC," said Wilson Chu, a professor at University of Connecticut.

Currently, a next-generation MLL microscope with below 1-nm stability is under development, led by Evgeny Nazaretski, a co-author of the paper, and will be used as the workhorse at HXN beamline. "At NSLS-II, we will explore the full power of the MLL microscope and provide users not only a tool with high resolution, but also with new imaging capabilities," said Yong Chu, another co-author of the paper and also group leader of the HXN beamline.

Yan and his collaborators conducted the experiment at 26-ID of Advanced Photon Source at Argonne Lab, using a monochromatic x-ray beam with photon energy of 12 keV focused by a pair of multilayer Laue lenses placed orthogonally with respect to each other.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Angela Leroux-Lindsey

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Summary Slide (pdf)

Related News Press

News and information

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Laboratories

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Landscapes give latitude to 2-D material designers: Rice University, Oak Ridge scientists show growing atom-thin sheets on cones allows control of defects August 9th, 2017

'Perfect Liquid' Quark-Gluon Plasma is the Most Vortical Fluid: Swirling soup of matter's fundamental building blocks spins ten billion trillion times faster than the most powerful tornado, setting new record for "vorticity" August 4th, 2017

Announcing the successful industrial feasibility test of a turnkey quantum Hall system for graphene characterisation and primary resistance metrology August 2nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process and achieve first-ever observation August 11th, 2017

Discoveries

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Announcements

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Tools

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 Stand 227 August 9th, 2017

Thermo Fisher Scientific Advances Cryo-EM Leadership to Drive Structural Biology Discoveries: New Thermo Scientific Krios G3i raises bar for performance, automation and time-to-results Breakthrough Thermo Scientific Glacios provides a cryo-EM entry path for a broader range of res August 8th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project