Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A new twist for quantum systems

Macroscopic quantum objects: A microwave resonator measuring 32 mm x 15 mm x 5 mm (left) contains superconducting circuits (center and right) that display similar quantum behavior as atoms.

Credit: Abdufarrukh Abdumalikov / ETH Zurich
Macroscopic quantum objects: A microwave resonator measuring 32 mm x 15 mm x 5 mm (left) contains superconducting circuits (center and right) that display similar quantum behavior as atoms.

Credit: Abdufarrukh Abdumalikov / ETH Zurich

Abstract:
To maneuver a car into a parking spot parallel to the road can be quite a challenge. It would be an easy task, of course, if only the vehicle could move sideways. As this is not possible, the sideways motion must be pieced together - sometimes elegantly, sometimes less so - in a series of forward and backward movements and turns on the steering wheel. Such a finely tuned sequence of movements also enables cats to almost always land on their feet after a free fall. Researchers at ETH Zurich have now used a similar principle for steering a quantum system into a desired state. This new type of control should be useful in situations in which quantum systems must be precisely controlled, not least in the context of quantum computers.

A new twist for quantum systems

Zurich, Switzerland | Posted on April 17th, 2013

Big quantum world

For their research, scientists in the group of Andreas Wallraff, a professor at the Department of Physics, use "artificial atoms" made of electronic circuits, which they control with microwave pulses. These circuits comprise superconducting components - that is, components in which electric currents can flow without resistance—and typically measure fractions of a millimeter. "For a quantum physicist, these circuits are enormously large objects, but they display behavior that is very similar to that of atoms," explains Wallraff.

Unlike in natural quantum systems, such as atoms, electrons or photons, the design and properties of the quantum circuits can be changed and adapted to different applications. Moreover, the fragile quantum states can survive for several microseconds in these superconducting circuits - a relatively long time for quantum objects. During this time the state can be manipulated with microwave pulses, in order to study the quantum state itself or to make use of it in a quantum computation.

Finding the right twist

These favorable properties notwithstanding, the quantum circuits are highly sensitive to external disturbances (caused, for example, by imperfect shielding), just as natural quantum systems. Under the direction of Stefan Filipp, a scientist in the Wallraff group, the ETH Zurich researchers have now found a possible way to render the quantum states more robust against disturbances. They make use of the geometry of so-called Hilbert spaces; these abstract spaces are the 'natural habitat' of any quantum system. Similarly as a car is driven through a two-dimensional space, a quantum system is steered through its Hilbert space.

Both for parallel parking and for controlling quantum systems, the specific sequence of operations is important. For example, when a motorist first performs all steering-wheel movements and then all forward and backward movements, then she or he will hardly end up in the parking spot. The situation is comparable for the physicists' artificial atoms, which they control with microwave pulses. "We obtain different results depending on the order in which we apply the individual pulses, even if the pulses have an identical shape, the same energy and the same length. This can only be explained by the different routes the system takes through its Hilbert space," says Stefan Filipp.

Path towards a quantum computer

"This is the first time that somebody obtained this specific type of control over an isolated quantum object and was able to study the process in detail," adds Abdufarrukh Abdumalikov, scientist in the Wallraff group. An important factor for the ETH physicists' success was that they could work with relatively short microwave pulses. "This allowed us to perform operations quickly, before the quantum state was irrevocably destroyed," says Abdumalikov.

The researchers expect that their method may provide a viable path towards a practical quantum computer. The development of such devices, which use the laws of quantum mechanics to tackle computational tasks, is a very active field of current study. Quantum physics opens up a whole range of new possibilities for information processing, and one day quantum computers may help solve problems that are computationally too complex for any conventional computer to solve within reasonable time.

####

For more information, please click here

Contacts:
Dr. Abdufarrukh Abdumalikov

41-446-337-124

Copyright © ETH Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Physics

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

Laboratories

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium August 25th, 2014

Superconductivity

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor July 15th, 2014

Iranian researchers Produce High-Temperature Superconductive Nanorods July 7th, 2014

Quantum Computing

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Diamonds are a Quantum Computer’s Best Friend: A new kind of quantum computer is being proposed by scientists from the TU Wien (Vienna) and Japan (National Institute of Informatics and NTT Basic Research Labs) August 8th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

Discoveries

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE